Раздел Безопасность труда
Природа не терпит неточностей и не прощает ошибок.
Р. Эмерсон
Глава 13. Опасные и вредные производственные факторы. Общие понятия
Глава 14. Влияние на организм человека метеорологических условий
Глава 15. Воздействие на организм человека вредных веществ, содержащихся в воздухе рабочей зоны
Глава 16. Производственное освещение
Глава 17. Защита от шума, ультра- и инфразвука, вибрации
Глава 18. Защита от электромагнитных полей и лазерного излучения
Глава 19. Защита от ионизирующих излучений
Глава 20. Электробезопасность и молниезащита зданий и сооружений
Глава 21. Безопасность работы оборудования под давлением выше атмосферного
Глава 22. Пожарная и взрывная безопасность
Глава 23. Основные требования безопасности к промышленному оборудованию
Глава 24. Обеспечение безопасности при работе с компьютером
Раздел Безопасность в чрезвычайных ситуациях
Лучше быть в безопасности, чем сожалеть.
Американская пословица
Глава 25. Обеспечение безопасности жизнедеятельности в чрезвычайных ситуациях
Глава 26. Правовые и организационные основы безопасности жизнедеятельности
Раздел Моделирование в экологии
В каждой естественной науке заключено
столько истины, сколько в ней
есть математики.
И. Кант
Глава 9. Динамические модели
Глава 10. Стохастические модели
Глава 11. Оптимизационные и игровые модели
Глава 12. Системный анализ и управление в экологии
Раздел Охрана окружающей среды
Не обвиняйте природу, она сделала
свое дело, делайте теперь свое.
Д. Мильтон
Глава 4. Защита биосферы от загрязнений
Глава 5. Основы рационального природопользования
Глава 6. Экологический менеджмент
Глава 7. Экологический маркетинг
Глава 8. Экологическое право
Раздел Основы экологии
Мы не унаследовали Землю наших отцов.
Мы взяли ее в долг у наших детей.
(Из материалов ООН)
Глава 1. Основные понятия, законы и концепции
Глава 2. Мониторинг окружающей среды
Глава 3. Экотоксикология
Случайные изменения среды
Рассмотрим теперь модель, учитывающую случайные изменения среды. Простейшая модель, соответствующая уравнению (10.1), имеет вид
(10.15)N(0)=N0, (10.16)
где y(t) – случайная величина со средним значением, равным нулю. Решение задачи (уравнения (10.15) при условии (10.16)) имеет вид
. (10.17)Чтобы придать смысл интегралу
от случайной величины y(t), сделаем некоторые упрощающие предположения. Будем считать, что y(t) – ступенчатая функция: y(t)=yi,при i-1?t?i, i=1,2,.... при этом все случайные величины у, имеют нормальное распределение [6]. Нормальный закон распределения (часто называемый законом Гаусса) наиболее часто встречается на практике. Большинство встречающихся на практике случайных величин, таких, например, как ошибки измерений, могут быть представлены как суммы большого числа сравнительно малых слагаемых – элементарных ошибок, каждая из которых вызвана действием отдельной причины, не зависящей от остальных. Каким бы законам распределения ни были подчинены элементарные ошибки, особенности этих распределений в сумме большого числа слагаемых нивелируются, а сумма оказывается подчиненной закону, близкому к нормальному. Например, проводя измерения длины листьев, упавших с деревьев в лесу, мы имеем случайную величину Х – длину листьев. Вероятность того, что Х<х,
т. е. Р={Х <х}, называется функцией распределения случайной величины и обозначается через F(x), а ее производная F'(x) = f(x) называется плотностью распределения и в случае нормального закона распределения имеет вид (рис. 10.1)
. (10.18)Численные параметры т и ? – это математическое ожидание (среднее значение) и среднее квадратичное отклонение случайной величины X. Действительно,
Применяя замену переменной
, получаем (10.19)Нетрудно убедиться, что первый из двух интегралов в уравнении (10.19) равен нулю, а второй представляет собой известный интеграл Эйлера–Пуассона
, (10.20)поэтому из уравнения (10.19) вытекает, что М[Х]=т. Вычислим дисперсию величины X:
Применив снова замену переменной получим
(10.21)
Интегрируем это выражение по частям:
(10.22)
Следовательно, ? в выражении (10.18) равна корню из дисперсии, т. e. среднему квадратичному отклонению. Итак,
Е[уi]=т, D[yi]=var(yi)=?2. (10.23)
Покажем, что если т= , то Е. Действительно,
Применив снова замену х = ,
получим
(10.24)
Вернемся к формуле (10.17), которая в наших предположениях имеет вид
, (10.25)
откуда для среднего значения N(t) получаем выражение
, (10.26)
а для дисперсии D[N] = var(N) –
(10.27)
Теперь имеем
(10.28)
Следовательно,
(10.29)
и коэффициент вариации при t > ? равен
. (10.30)
Из формул (10.26) и (10.30) следует, что хотя, как и в детерминистском случае, среднее значение N(t)
экспоненциально возрастает, экспоненциально возрастают и отклонения от среднего значения. Таким образом, с течением времени колебания численности популяции становятся все более резкими. В этом отражается то обстоятельство, что детерминистская система не имеет стационарного состояния, более того, при определенных соотношениях между а
и ? вероятность ее вымирания приближается к единице.
Найдем вероятность вымирания популяции за время t – функцию p0(t):
Положим, тогда уt, имеет нормальное распределение, причем , vaz(yt)=t?2. Следовательно,
Полагая , имеем
(10.31)
где Ф(х) = –
так называемый интеграл ошибок.
Если >0, т. e. ?2>2a, то > ? при t> ?, следовательно,
Проведенный анализ показывает, что преимущественное использование детерминистских, а не стохастических моделей оправдано лишь тем, что в математическом плане они проще и удобнее. При этом если детерминистская модель свидетельствует об устойчивом равновесии, то соответствующая стохастическая модель предсказывает длительное выживание; если же детерминистская модель не выявляет равновесия или предсказывает неустойчивое равновесие, то стохастическая модель может предсказать вероятность вымирания.
Контрольные задания
1. Допустим, вероятность ? рождения особью детеныша в два раза больше вероятности ? гибели самой особи. Определить среднее значение N(t) популяции в момент времени t = 100, вычислить также вариацию var (N(t)),
коэффициент вариации , найти ограничения на ? и начальное значение популяции N0,
при котором коэффициент вариации при t = 100 будет меньше 0,1%.
2. В модели, учитывающей случайные изменения среды, будем предполагать, что а=. Найти соотношения между N0 и ?, при которых вероятность вымирания популяции при t
= 100 будет больше 90%. (Указание: воспользоваться таблицей значений интеграла вероятностей Ф(z), приведенной, например, в [6].)
Случайные процессы при описании популяций
Рассматриваемые выше модели – детерминистские. Это должно иметь какие-то основания, которые мы и попытаемся сейчас обсудить.
Если речь идет о динамике популяций, то можно выделить по крайней мере два аспекта, по которым детерминистская модель не может служить точным отражением реальной экологической системы: во-первых, она допускает бесконечно большую численность популяции; во-вторых, не учитывает случайных колебаний, происходящих в среде во времени.
В качестве примера детерминистской экологической модели рассмотрим уравнение
, (10.1)где N – число особей в момент времени t,
а –
истинная скорость роста.
Решением этого уравнения, удовлетворяющим начальному условию
N(0)=No, (10.2)
является функция
N(t)=N0eat, (10.3)
(так называемый закон Мальтуса – закон роста популяции без конкуренции). В основе главного допущения здесь лежит то, что за короткий промежуток времени t
каждая особь порождает a?t новых особей.
В соответствующей стохастической модели принимается более правдоподобное допущение, согласно которому за период ?t одна особь с вероятностью ? производит одного потомка и с вероятностью ??t умирает. Обозначим через рi(t) вероятность того, что в момент времени t численность популяции равна i, i = 0, 1, 2, ... Рассмотрим величину pi(t + ?t). В силу малости ?t можно считать, что численность популяции останется прежней, равной i, в результате трех независимых событий – появления потомков в популяции с численностью i–1, отсутствия случаев рождения и смерти в популяции с численностью i и смерти в популяции с численностью i+1. При этом вероятность pi(t + ?t) равна сумме вероятностей этих событий:
pi(t + ?t) = (i-1) ? pi-1 (t) ?t+(1-i(?+?)pi(t) ?t+(i+1) ?i+1(t) ?t , откуда
(i-1) ? pi-1 (t)- i(?+?)pi(t)+ (i+1) ?i+1(t).Переходя в полученном соотношении к пределу при t > ?, получим систему уравнений Колмогорова
(10.4)В виде (10.4) уравнения справедливы при i= 2, 3, 4, .... При i = 1 из (10.4) получаем уравнение
в популяции имелось N0 особей,
(10.5)
а при i
= 0 – уравнение
(10.6)
(естественно считать, p-1(t)?0).
Если в начальный момент времени t=0 в популяции имелось N0 особей, то начальные условия для системы обыкновенных дифференциальных уравнений с постоянными коэффициентами (10.4)–(10.6)
имеют вид:
(10.7)
Рассматриваемый процесс гибели и рождения является случайным процессом (классическим примером цепей Маркова [17]), а само решение задачи (10.4)–(10.7) можно получить стандартными методами теории обыкновенных дифференциальных уравнений (см., например, [47]). Нас интересуют следующие вероятностные характеристики: ожидаемое значение, т. е. среднее значение популяции в момент времени t
N(t)=(t) (10.8)
и вариация (дисперсия), т. е. среднее квадратичное отклонение от N(t)
. (10.9)
Для вычисления N(t)
заметим, что из уравнения (10.5) и первого уравнения из (10.4) вытекает
Продолжая этот процесс сложения, получим
т. е. обыкновенное дифференциальное уравнение
N'(t)=(? - ?)N(t) (10.10)
с начальным условием (10.7)
(10.11)
Решение его, очевидно, равно
N(t)=, (10.12)
в частности, при ? > ? численность популяции экспоненциально возрастет (при ?=?+a определяется уравнением (10.3)), а при ? < ?
экспоненциально убывает при t
> ?. Аналогично (см. [17]) вычисляется вариация
(10.13)
откуда при ? > ? для коэффициента вариации получаем выражение
(10.14)
которое при t
> ? стремится к величине . Следовательно, при достаточно больших начальных значениях популяции N0 среднее квадратичное отклонение от N(t) является равномерно малым, и детерминистская модель дает адекватное представление о поведении популяции при больших значениях времени.
Социоприродная экосистема как объект экологического контроля
За 3,5 млрд лет существования биосферы выработался механизм поддержания экологического равновесия естественных экосистем. Экологическое равновесие есть не что иное, как сохранение природной, естественной экосистемы в определенном состоянии в течение характерного для нее времени (например, для биосферы – в рамках геологического периода). Это равновесие сохранялось до появления в истории жизни на Земле рода Homo. В его позднейшей форме – Homo sapiens,
возникшей около 40 тыс. лет назад, был изобретен новый способ приспособления к среде – изменение среды. Способ, которого не знал ни один живой организм, существовавший до появления человека. Этим способом явилась культура.
Что меняется в этой форме по сравнению со старой? В естественных экосистемах идет непосредственный обмен между живыми организмами и неживой природой. Но по мере исторического развития Homo sapiens между этими двумя частями экосистемы встраивается посредник, контролирующий естественный обмен. Этим посредником является человеческий разум.
По мере развития разум проникает в обменные процессы в экосистеме и преобразует их. При этом меняется характер обмена, он становится обусловленным, заданным, умышленным. Руководствуясь мировоззрением, человек действует целенаправленно. В результате человеческой деятельности естественные экосистемы трансформируются в социоприродные экосистемы, состоящие из неживой природы, живой природы и не природы – культуры. Человек использует законы и свойства природы против нее же самой, задавая природным процессам те направления, форму и темпы протекания, которые требуются ему. На основе познанных законов природы человек устанавливает свое господство над ней и обеспечивает его с помощью труда. Но труд – это не только великое благо для человека, освободившее его от рабской зависимости от природы. Труд как мощное средство воздействия на природные процессы таит в себе и другую сторону. Из фактора созидательного он при определенных условиях может превратиться в свою противоположность – разрушительный фактор, особенно в части разрушения ОС.
В условиях человеческой деятельности экологическое равновесие стало выступать как соотношение ресурсно-экологических возможностей природы и хозяйственных потребностей человека. И если в естественной системе происходит саморегуляция, самонастраивание всех подсистем экосистемы, то в социоприродной экосистеме общество берет на себя роль организатора жизни, роль управленца. Однако до недавнего времени это управление осуществлялось не в интересах сохранения и развития социоприродной экосистемы в целом, а в интересах сохранения и развития лишь одной ее части – самого человеческого общества. Пренебрежение «интересами» других подсистем – геосферы и биосферы, рассмотрение их в качестве средства увеличения комфорта социальной жизни оказывают дестабилизирующее воздействие на всю систему и нарушают экологическое равновесие.
Человеческое общество как подсистема биосферы всецело зависит от благополучия системы в целом. Другими словами, глобальное нарушение экологического равновесия, переход биосферы в иное качественное состояние означали бы для человечества катастрофу. Социальные механизмы могут ее отдалить или приблизить, но не ликвидировать. Поэтому перед человечеством возникает настоятельная необходимость поддержать экологическое равновесие, которое, во-первых, жизненно необходимо человечеству и, во-вторых, представляет собою эколого-экономический фундамент развития общества.
Во второй половине XX столетия появляется понимание зависимости благополучия общества от благополучия каждой подсистемы общей системы биосферы, понимание неприемлемости управления системой в эгоистически понятых интересах людей за счет переэксплуатации природы. Отсюда необходимость выработки новой стратегии управления системой в целях ее оздоровления. Этим целям, в частности, служит экологический менеджмент.
На небольшом примере использования поверхности планеты Земля человеком можно убедиться, насколько актуальны проблемы экологического менеджмента в настоящее время. Площадь всей суши на планете составляет 149,1 млн км2, из которых 40 млн км2 занято ледниками и пустынями.
Антропогенные ландшафты занимают площадь 54 млн км2, из них 50 млн км2
– территории сельскохозяйственного использования и только 4 млн км2
– зоны урбанизации. В XXI в. в связи с ростом населения Земли ожидается, что площадь сельскохозяйственных угодий возрастет до 80 млн км2, а зона урбанизации может возрасти до 20 млн км2. Это значит, что около 100 млн км2, т. е. вся пригодная для использования суша будет радикально преобразована человеком.
В настоящее время сохранение экологического равновесия трактуется как достижение устойчивого развития. Под устойчивым развитием понимают устойчивость темпов экономического роста (по некоторым оценкам, не более 2–3% в год), при котором уровень давления на ОС компенсировался бы темпами самовосстановления ее качеств [26, 41]. Уровень жизни человека напрямую связан с потреблением природных ресурсов до тех пор, пока среда самовосстанавливает свои качества. Но как только темпы использования природных ресурсов превышают темпы самовосстановления среды жизни, человек, чтобы выжить, должен тратить новые ресурсы и энергию на поддержание качества ОС. В эпоху товарно-денежных отношений экологическое равновесие выступает как своеобразный товар. Его стоимость включает прямые затраты на охрану ОС и косвенные, связанные с отказом от перспективных экономически, но пагубных экологически начинаний. Примером последних может служить отказ от строительства скоростной железнодорожной магистрали Москва – Санкт-Петербург, строительство которой нанесло бы непоправимый вред всему европейскому региону России.
В связи с поисками выхода из экологического кризиса активизировались попытки построить научную теорию взаимодействия природы и общества. Идет научный поиск основных законов оптимизации взаимодействия общества и природы, которые стали бы законами саморегуляции системы «общество–природа». Среди этих законов центральное место принадлежит закону оптимального соответствия характера общественного развития состоянию природной среды.
По поручению ООН группой ученых разработана Концепция устойчивого развития общества, одобренная на конференции по окружающей среде и развитию в Рио-де-Жанейро («Рио-92») и рекомендованная всем странам мира как общая стратегия преодоления глобального экологического кризиса [26, 41] .
В России разработан и одобрен Государственной Думой и Правительством страны национальный вариант Концепции. Он рекомендован регионам страны для конкретизации и исполнения, хотя многие принципиальные моменты, связанные с механизмами и средствами реализации Концепции на местах, пока централизованно не определены.
Модель устойчивого развития Российской Федерации и ее регионов, предлагаемая Концепцией, предполагает
· снижение уровня давления на ОС;
· улучшение качества ОС по отслеживаемым параметрам чистоты атмосферы, гидросферы, почвы, снижение объемов отходов производства;
· сохранение биоразнообразия;
· повышение уровня жизни населения, в том числе увеличение средней продолжительности жизни.
Эти задачи и являются главными для экологического менеджмента.
Создание требуемых параметров микроклимата в производственных помещениях
Для создания требуемых параметров микроклимата в производственном помещении применяют системы вентиляции и кондиционирования воздуха, а также различные отопительные устройства. Вентиляция представляет собой смену воздуха в помещении, предназначенную поддерживать в нем соответствующие метеорологические условия и чистоту воздушной среды.
Вентиляция помещений достигается удалением из них нагретого или загрязненного воздуха и подачей чистого наружного воздуха. Поскольку в данной главе рассматриваем системы вентиляции, предназначенные для обеспечения заданных метеорологических условий, рассмотрим общеобменную вентиляцию, которая осуществляет смену воздуха во всем помещении. Другие типы вентиляции рассмотрены далее.
Общеобменная вентиляция предназначена для поддержания требуемых параметров воздушной среды во всем объеме помещения. Схема такой системы вентиляции представлена на рис. 14.1.
Для эффективной работы системы общеобменной вентиляции при поддержании требуемых параметров микроклимата количество воздуха, поступающего в помещение (Lпр), должно быть практически равно количеству воздуха, удаляемого из него (Lвыт).
Количество приточного воздуха, требуемого для удаления избытков явной теплоты из помещения (Qизб> кДж/ч), определяется выражением:
(14.1)где:
– требуемое количество приточного воздуха, м3/ч; С – удельная теплоемкость воздуха при постоянном давлении, равная 1 кДж/(кг?град); – плотность приточного воздуха, кг/м3; tвыт– температура удаляемого воздуха, ?С;
– температура приточного воздуха, °С.Для эффективного удаления избытков явной теплоты температура приточного воздуха должна быть на 5–8°С ниже температуры воздуха в рабочей зоне.
Количество приточного воздуха, необходимого для удаления влаги, выделившейся в помещении, рассчитывают по формуле:
(14.2)
где
– масса водяных паров, выделяющихся в помещении, г/ч; – содержание влаги в удаляемом из помещения воздухе, г/кг; – содержание влаги в наружном воздухе, г/кг; - плотность приточного воздуха, кг/м3.При одновременном выделении в производственном помещении паров влаги и избыточной теплоты последовательно проводят расчет по формулам (14.1) и (14.2) и в качестве искомого результата используют большее из полученных значений.
По способу перемещения воздуха вентиляция может быть как естественной, так и с механическим побуждением, возможно также сочетание этих двух способов. При естественной вентиляции воздух перемещается за счет разности температур в помещении и наружного воздуха, а также в результате ветрового давления (действия ветра). Способы естественной вентиляции: инфильтрация, проветривание, аэрация, с использованием дефлекторов.
При механической
вентиляции воздух перемещается с помощью специальных воздуходувных машин-вентиляторов, создающих определенное давление и служащих для перемещения воздуха в вентиляционной сети. Чаще всего на практике используют осевые и радиальные вентиляторы.
По месту действия вентиляция бывает общеобменной и местной. Общеобменная
вентиляция обеспечивает поддержание требуемых параметров воздушной среды во всем объеме помещения, а местная
– в определенной его части.
Воздух, всасываемый вентиляторами из атмосферы, после очистки и подогрева поступает в специальные каналы, называемые воздуховодами, и разводится по производственному помещению. Такая вентиляция называется приточной. Нагретый воздух из помещения, содержащий водяные пары, отводится из помещения с помощью системы вытяжной вентиляции.
Приточная и вытяжная ветвь вентиляции могут быть объединены, в этом случае система вентиляции называется приточно-вытяжной.
Большое распространение на практике получила приточно-вытяжная вентиляция с рециркуляцией воздуха. Для нее характерно использование части воздуха, удаляемого из помещения и прошедшего очистку в системе приточной вентиляции. При этом рециркулирующий воздух разбавляется частью свежего воздуха, поступающего из атмосферы. Использование такой системы вентиляции позволяет снизить расходы на очистку воздуха, поступающего из атмосферы, и на его нагрев в холодное время года.
Как уже сказано выше, для создания требуемых параметров микроклимата на определенном участке производственного помещения служит местная приточная вентиляция. В отличие от общеобменной приточной вентиляции она подает воздух не во все помещения, а лишь в ограниченную часть. Различают следующие устройства местной приточной вентиляции: воздушные души и оазисы, а также воздушно-тепловые завесы.
Воздушные души
применяются для защиты работающих от воздействия теплового излучения интенсивностью 350 Вт/м2 и более. Принцип действия этого устройства основан на обдуве работающего струей увлажненного воздушного потока, скорость которого составляет 1–3,5 м/с. При этом увеличивается теплоотдача от организма человека в окружающую среду.
В воздушных оазисах,
представляющих собой часть производственного помещения, ограниченного со всех сторон переносными перегородками, создаются требуемые параметры микроклимата. Указанные источники используются в горячих цехах.
Для защиты людей от переохлаждения в холодное время года в дверных проемах и воротах устраивают воздушные
и воздушно-тепловые завесы.
Принцип их работы основан на том, что под углом к холодному воздушному потоку, поступающему в помещение, направлен воздушный поток (комнатной температуры или подогретый), который либо снижает скорость и изменяет направление холодного воздушного потока, уменьшая вероятность возникновения сквозняков в производственном помещении, либо подогревает холодный поток (в случае воздушно-тепловой завесы). Такие воздушно-тепловые завесы установлены на входах на станции метрополитена, а также в дверях крупных магазинов.
В настоящее время для поддержания требуемых параметров микроклимата широко применяются установки для кондиционирования воздуха (кондиционеры). Кондиционированием воздуха называется создание и автоматическое поддержание в производственных или бытовых помещениях независимо от внешних метеорологических условий постоянных или изменяющихся по определенной программе температуры, влажности, чистоты и скорости движения воздуха, сочетание которых создает комфортные условия труда или требуется для нормального протекания технологического процесса.
Кондиционер – это автоматизированная вентиляционная установка, которая поддерживает в помещении заданные параметры микроклимата. Эксплуатация установок для кондиционирования воздуха обычно дороже, чем вентиляционных систем.
Для поддержания заданной температуры воздуха в помещениях в холодное время года используют различные системы отопления: водяная, паровая, воздушная и комбинированная.
В системах водяного отопления
в качестве теплоносителя используется вода, нагретая либо до 100°С либо перегретая выше этой температуры. Эти системы отопления наиболее эффективны в санитарно-гигиеническом отношении.
Системы парового отопления
используются, как правило, в промышленных помещениях. Теплоносителем в них является водяной пар низкого или высокого давления.
В воздушных системах для отопления используется нагретый в специальных установках (калориферах) воздух. Комбинированные системы отопления используют в качестве элементов рассмотренные выше системы отопления.
Параметры микроклимата в производственных помещениях контролируются различными контрольно-измерительными приборами. Для измерения температуры воздуха в производственных помещениях применяют ртутные (для измерения температуры выше 0°С) и спиртовые (для измерения температуры ниже 0°С) термометры. Если требуется постоянная регистрация изменения температуры во времени, используют приборы, называемые термографами. Например, отечественный прибор – термограф типа М-16 – регистрирует изменение температуры за определенный период (сутки или неделю). Существуют и другие устройства для измерения температуры воздуха, например, термопары.
Для измерения относительной влажности воздуха используются приборы, называемые психрометрами и гигрометрами, а для регистрации изменения этого параметра во времени служит гигрограф.
Простейший психрометр – это устройство, состоящее из сухого и влажного термометров. У влажного термометра резервуар обернут гигроскопической тканью, конец которой опущен в стаканчик с дистиллированной водой.
Сухой термометр показывает температуру воздуха в производственном помещении, а влажный – более низкую температуру, так как испаряющаяся с поверхности влажной ткани вода отнимает тепло у резервуара термометра. Существуют специальные переводные психрометрические таблицы, позволяющие по температурам сухого и влажного термометров определять относительную влажность воздуха в помещении.
Более сложным по конструкции, но и более точным является так называемый аспирационный психрометр, который также состоит из сухого и влажного термометров, помещенных в металлические трубки и обдуваемых воздухом со скоростью 3–4 м/с, в результате чего повышается стабильность показаний термометров и практически устраняется влияние теплового излучения. Определение относительной влажности осуществляется также с использованием психрометрических таблиц. Аспирационные психрометры, например МВ-4М или М-34, могут быть использованы для одновременного измерения в помещении температуры воздуха и относительной влажности.
Другим устройством для определения относительной влажности служит гигрометр, действие которого основано на свойстве некоторых органических веществ (органических мембран, человеческого волоса) удлиняться во влажном воздухе и укорачиваться в сухом. Измеряя деформацию чувствительного элемента (мембраны или волоса), можно судить о величине относительной влажности в производственном помещении. Гигрографы записывают изменения величины относительной влажности как функцию времени. Примером такого гигрографа может служить прибор типа М-21, который осуществляет суточную или недельную запись регистрируемого параметра.
Скорость движения воздуха в производственном помещении измеряется приборами – анемометрами.
Работа крыльчатого анемометра основана на изменении скорости вращения специального колеса, оснащенного алюминиевыми крыльями, расположенными под углом 45° к плоскости, перпендикулярной оси вращения колеса. Ось колеса соединена со счетчиком оборотов. При изменении скорости воздушного потока изменяется и скорость вращения колеса, т.
е. увеличивается (уменьшается) число оборотов за определенный промежуток времени. По этой информации можно определить скорость воздушного потока.
Крыльчатые анемометры рекомендуется применять для измерения скорости воздушного потока в интервале 0,4–10 м/с, при скоростях 1–35 м/с применяются чашечные анемометры, в которых крылья заменены чашечками. Примером крыльчатого анемометра служит прибор АСО-3 тип Б, чашечного – тип МС-13.
Существуют и другие приборы для измерения скорости движения воздуха: шаровые или цилиндрические кататермометры и термоанемометры.
Интенсивность теплового излучения в отечественной практике измеряют актинометрами, действие которых основано на поглощении теплового излучения и регистрации выделившейся тепловой энергии. Простейший тепловой приемник – термопара. Она представляет собой электрический контур из двух проволок, изготовленных из различных материалов (как металлов, так и полупроводников), например медь–константан, серебро–палладий, серебро–висмут, висмут–сурьма, вольфрам–рений и др. Две проволоки из различных материалов сваривают или спаивают между собой. Тепловое излучение нагревает один из спаев двух проволок, в то время как другой спай служит для сравнения и поддерживается при постоянной температуре (Т0). Электрическая схема термопары представлена на рис. 14.2.
Две проволоки из материалов А и В составляют электрический контур. При нагреве одного из спаев тепловым излучением до температуры Т возникает термоЭДС VAB, величина которой измеряется вольтметром. ТермоЭДС в большом интервале температур прямо пропорциональна разности Т– Т0 (где, Т0
– температура холодного слоя термопары):
Величина носит название коэффициента Зеебека для веществ А и В. Этот эффект называют термоэлектрическим или эффектом Зеебека в честь его открывателя (1821 г.). Иногда п термопар соединяют между собой последовательно, получая при этом термоэлектрическую батарею. ТермоЭДС и соответственно чувствительность этого прибора в п раз выше, чем у обычной термопары, что позволяет измерять тепловое излучение малой интенсивности.
В основу промышленных приборов для измерения интенсивности теплового излучения – актинометров – положен принцип термоэлектрической батареи. Чувствительный элемент актинометра состоит из алюминиевой пластинки, на которой в шахматном порядке расположены зачерненные и блестящие секции. Зачерненные полоски интенсивно поглощают тепловое излучение, а блестящие отражают его, поэтому первые из них нагреваются значительно сильнее, чем вторые. Положительные спаи термопар, соединенные между собой последовательно присоединены к зачерненным полоскам алюминиевой фольги и нагреваются под воздействием теплового излучения значительно сильнее, чем отрицательные спаи, присоединенные к блестящим полоскам. Под воздействием разности температур возникает термоЭДС, которая измеряется чувствительным прибором, отградуированным в единицах тепловой радиации (Вт/м2).
При отклонении параметров микроклимата от величин, создающих комфортные условия, большое значение имеет правильный выбор спецодежды. При работе в помещениях с пониженной температурой воздуха необходимо использовать утепленную спецодежду. Для персонала, занятого в горячих цехах, используют спецодежду, изготовленную из материалов с низкой теплопроводностью.
Контрольные вопросы
1. Что такое воздух рабочей зоны?
2. Какие основные нормируемые показатели микроклимата воздуха рабочей зоны вы знаете?
3. Что является источниками теплового излучения?
4. Что такое терморегуляция человеческого организма?
5. Из каких основных процессов состоит теплоотдача человеческого организма в окружающую среду?
6. Как влияют на человеческий организм температура окружающего воздуха, его относительная влажность и скорость движения?
7. Как выбирают параметры микроклимата в производственном помещении?
8. Дайте определение понятий «оптимальные параметры микроклимата» и «допустимые параметры микроклимата».
9. Какие мероприятия используют для поддержания нормальных параметров микроклимата в рабочей зоне?
10. Дайте определение понятий «вентиляция воздуха» и «кондиционирование воздуха».
11. Как рассчитать количество приточного воздуха, требуемого для удаления избытков явной теплоты и влаги из помещения?
12. Что такое естественная вентиляция и вентиляция с механическим побуждением?
13. Дайте определение понятий «приточная вентиляция», «вытяжная вентиляция» и «приточно-вытяжная вентиляция».
14. Что такое воздушные души, воздушные оазисы, воздушные и воздушно-тепловые завесы?
15. Какие системы отопления вы знаете?
16. Назовите приборы и устройства для измерения метеорологических условий.
Создание требуемых условий освещения на рабочем месте
Для создания наилучших условий для видения в процессе труда рабочие места должны быть нормально освещены. Требуемый уровень освещенности в первую очередь определяется точностью выполняемых работ и степенью опасности травмирования. Для характеристики точности выполняемых работ вводится понятие объекта различения – это наименьший размер рассматриваемого предмета, который необходимо различить в процессе работы. Например, при выполнении чертежных работ объектом различения служит толщина самой тонкой линии на чертеже, при работе с печатной документацией – наименьший размер в тексте имеет точка и т.д.
Большое значение имеет характер фона, на котором рассматриваются объекты, т. е. поверхности, непосредственно прилегающей к объекту различения, и контраст объекта с фоном, который определяется соотношением яркостей рассматриваемых объекта и фона.
Количественно фон может быть охарактеризован коэффициентом отражения
светового потока от поверхности, образующей фон. Значение лежит в пределах 0,02–0,95. Если оно превышает 0,4, то фон называется светлым, при = 0,2–0,4 – средним, при < 0,2 – темным.Контраст объекта с фоном (K) определяется по формуле:
(16.8)где
и – яркость соответственно фона и объекта.При К > 0,5 контраст объекта с фоном считается большим, при К = 0,2–0,5 – средним, при К < 0,2 – малым.
Большое значение имеет также равномерность распределения яркости на рабочей поверхности, отсутствие на ней резких теней, постоянство величины освещенности во времени и ряд других факторов.
Все электрические элементы осветительных установок должны быть электро-, пожаро- и взрывобезопасными, экономичными и долговечными.
Для создания искусственного освещения применяются различные электрические источники света: лампы накаливания и разрядные источники света. Кратко рассмотрим основные параметры электрических источников света. К числу наиболее важных из них относятся показатели, характеризующие излучение, электрический режим и конструктивные параметры.
Излучение электрических источников света характеризуется световым потоком, силой света (силой излучения), энергетической (световой) яркостью и ее распределением, распределением излучения по спектру, а также изменением этих величин в зависимости от времени работы на переменном токе. Для характеристики цвета излучения осветительных ламп дополнительно вводятся цветовые параметры.
Электрический режим характеризуется мощностью лампы, рабочим напряжением на лампе, напряжением питания, силой тока и родом тока (постоянный, переменный с определенной частотой и др.).
К конструктивным параметрам ламп относятся их габаритные и присоединительные размеры, высота светового центра, размеры излучающего света, форма колбы, ее оптические свойства (прозрачная, матированная, зеркализированная и т.д.), конструкция ввода и др.
К эксплуатационным параметрам электрических источников света относятся эффективность, надежность, экономичность и др.
Эффективность
источника света определяется как энергетическим кпд преобразования электрической энергии в оптическое излучение, так и эффективным кпд лампы, который представляет собой долю энергии оптического излучения, превращаемую в эффективную энергию приемника (человеческого глаза), т. е. эффективная энергия приемника (человеческого глаза) представляет собой ту часть энергии оптического излучения, которая вызывает в зрительном анализаторе человека определенные ощущения.
Надежность
источников оптического излучения характеризуют полным сроком службы или продолжительностью горения и полезным сроком службы, т. е. временем экономически целесообразной эксплуатации лампы. Обычно за эту характеристику выбирают время, в течение которого световой поток, излучаемый лампой, изменяется не более чем на 20%.
Источники света массового применения должны обладать экономичностью, за которую обычно принимают стоимость их эксплуатации, отнесенную к одному люмен-часу.
Для освещения производственных помещений используют либо лампы накаливания (источники теплового излучения), либо разрядные лампы.
К преимуществам ламп накаливания следует отнести простоту их изготовления, удобство в эксплуатации. Эти лампы включаются в электрическую сеть без использования каких-либо дополнительных устройств. Основные недостатки – небольшой срок службы (? 2,5 тыс. ч) и невысокая светоотдача. Кроме того, спектр ламп накаливания, в котором преобладают желтые и красные лучи, значительно отличается от спектра естественного (солнечного) света, что вызывает искажение цветопередачи и не позволяет использовать данные лампы для освещения тех работ, для которых требуется различение оттенков цветов.
Для освещения производственных помещений в настоящее время используют лампы накаливания следующих типов: вакуумные (НВ), газонаполненные биспиральные (НБК), рефлекторные (HP), являющиеся лампами-светильниками (часть колбы такой лампы покрыта зеркальным слоем), обладающие большой мощностью кварцевые галогенные лампы (КГ) и др.
Разрядные лампы также широко применяются для освещения производственных помещений. По сравнению с лампами накаливания они обладают повышенной световой отдачей, большим сроком службы (до 10 000 ч). Спектр их излучения близок к спектру естественного света.
К недостаткам разрядных ламп в первую очередь следует отнести пульсацию светового потока (периодическое его изменение при работе лампы), ухудшающую условия зрительной работы. Для стабилизации светового потока необходимо использовать дополнительную аппаратуру. Специальные пусковые устройства применяют для включения разрядных ламп. Кроме того, эти лампы при работе могут создавать радиопомехи, для подавления которых устанавливают фильтры. Все это приводит к повышению затрат при монтаже осветительной сети из разрядных ламп по сравнению с лампами накаливания.
Из разрядных источников света на промышленных предприятиях широко применяют различные люминесцентные лампы (ЛЛ), дуговые ртутные лампы (ДРЛ), рефлекторные дуговые ртутные лампы с отражающим слоем (ДРЛР) и ряд других.
За рубежом разработаны и используются для освещения компактные люминесцентные лампы.
Особенностью этих разрядных ламп является то, что они предназначены для непосредственной замены ламп накаливания, так как снабжены стандартным резьбовым цоколем и могут вворачиваться в электрический патрон, как обыкновенные лампы накаливания. Компактные люминесцентные лампы дают большую экономию электроэнергии. Современные разрядные источники света постепенно вытесняют из обихода лампы накаливания. В развитых странах мира разрядные лампы создают более половины светового потока и предполагается, что в будущем эта доля будет возрастать.
Источники света располагаются в специальной осветительной аппаратуре, основная функция которой – перераспределение светового потока лампы с целью повышения эффективности осветительной установки. Комплекс, состоящий из источника света и осветительной арматуры, называют светильником или осветительным прибором.
Нормирование освещенности производится в соответствии со СНиП 23-05-95 «Естественное и искусственное освещение». В соответствии с данным нормативным документом в зависимости от степени зрительного напряжения все работы делятся на восемь разрядов (I–VIII) и четыре подразряда (а, б, в, г).
Для определения величин нормированного естественного и искусственного освещения по табл. 1 СНиПа необходимо задать наименьший размер объекта различения, а также характеристику фона и контраст объекта с фоном. Предположим, выполняется работа средней точности. Фрагмент табл. 1 СНиПа для этого случая представлен в табл. 16.1.
Работа средней точности характеризуется тем, что размер наименьшего объекта различения лежит в пределах от 0,5 до 1 мм. Условимся, что в процессе зрительной работы фон и контраст объекта с фоном средний. По этим данным можно определить разряд и подразряд зрительной работы (IVB), а также нормированные величины освещения. При искусственном освещении величина комбинированной освещенности должна составлять 400 лк, а общей – 200 лк. Соответственно величина КЕО при верхнем или комбинированном естественном освещении должна быть равна 4%, а при боковом - 1,5%.
Аналогичные характеристики при совмещенном освещении составят 2,4 и 0,9%.
Для определения норм освещенности можно воспользоваться и табл. 2 СНиПа, фрагмент которой приведен в табл. 16.2.
В отличие от табл. 16.1 для определения норм освещенности необходимо задать характеристику помещения. Предположим, нас интересует норма освещенности в учебной аудитории вуза. По табл. 2 СниПа 23-05-95 (табл. 16.2) находим, что освещенность доски в аудитории при искусственном освещении должна составлять 500 лк, а освещенность на рабочих столах и партах, расположенных на высоте 0,8 м от уровня пола, - 300 лк. Соответственно величина КЕО должна составлять 1,5% при боковом освещении и 4% – при верхнем или комбинированном освещении.
Кроме перечисленных параметров, в табл. 2 СНиПа представлены такие качественные показатели производственного освещения, как показатель дискомфорта и коэффициент пульсации освещенности.
Примечание. Плоскость Г – горизонтальная, В – вертикальная.
Определив по СНиП 23-05-95 нормативную величину освещенности в помещении при использовании электрических источников света, необходимо рассчитать общую мощность электрической осветительной установки.
Для расчета искусственного освещения применяют метод светового потока, точечный метод и метод удельной мощности. Рассмотрим в качестве примера расчет с применением метода светового потока, который используется для определения общего равномерного освещения на горизонтальной поверхности.
Световой поток от лампы накаливания или группы разрядных ламп, образующих светильник, рассчитывают по формуле:
(16.9)
где Фл – световой поток лампы или группы ламп, лм; N – число светильников в помещении, шт.; Ен – нормированная минимальная освещенность, лк; S – площадь освещаемого помещения, м2; z – коэффициент минимальной освещенности, равный отношению Ecp/Emin
значение которого для ламп накаливания составляет 1,15, а для люминесцентных ламп -1,1; k – коэффициент запаса, составляющий для ламп накаливания 1,3–1,6 и для разрядных ламп – 1,4–1,8; ? - коэффициент использования светового потока ламп (справочные данные).
Рассчитав по формуле (16.9) световой поток лампы Фл, по справочнику подбирают ближайшую стандартную лампу, после чего определяют электрическую мощность всей осветительной системы.
Для правильной организации рабочих мест в производственном помещении требуется проводить расчеты коэффициентов естественной освещенности. КЕО рассчитывают при боковом освещении или при верхнем ,
используя следующие, выражения:
(16.10)
(16.11)
где ?б и ?в – соответственно геометрический КЕО в расчетной точке при боковом или верхнем освещении; q – коэффициент, учитывающий неравномерную яркость облачного неба; ?зд - геометрически учитывающий отражение света от противостоящих зданий; R - коэффициент, учитывающий относительную яркость противостоящих зданий; ?ср - среднее значение геометрического КЕО; r1 r2 - коэффициенты, учитывающие повышение КЕО из-за отражения от поверхностей помещения; ?0 – общий коэффициент светопропускания; k3 - коэффициент запаса, находящийся в пределах 1,2–2,0; kф
– коэффициент, учитывающий тип фонаря.
Все величины и коэффициенты, входящие в представленные формулы для определения КЕО, определяются в соответствии СНиП 23-05-95.
Для измерения освещенности в производственных помещениях применяют приборы, называемые люксометрами. В отечественной практике наиболее часто применяют люксометры марок Ю-16, Ю-116, Ю-117. Эти приборы измеряют фототок, возникающий в цепи селенового фотоэлемента и соединенного с ним измерительного прибора под влиянием падающего на чувствительный слой светового потока. Чем больше световой поток, тем сильнее отклоняется стрелка прибора от нулевой точки. Прибор градуирован в люксах.
Для измерения яркости используют промышленно выпускаемый яркометр типа ФПЧ.
К средствам индивидуальной защиты органов зрения относятся различные защитные очки, щитки и шлемы. Все они должны защищать органы зрения от ультрафиолетового и инфракрасного излучений, повышенной яркости видимого излучения и ряда других факторов.
Указанные средства защиты снабжены специальными светофильтрами, которые подбираются в зависимости от характера и интенсивности излучения в соответствии с ГОСТ 12.4.080-79. Так, например, для газо- и электросварщиков используют светофильтры типа Г и Э, для защиты глаз работающих у сталеплавильных и доменных печей – светофильтры П и Д.
Контрольные вопросы
1. Охарактеризуйте основные световые величины.
2. Какие виды производственного освещения вы знаете?
3. Что такое коэффициент естественного освещения (КЕО)?
4. Какие разновидности имеет искусственное освещение?
5. Охарактеризуйте источники искусственного освещения.
6. Как нормируется производственное освещение?
7. Как рассчитывается световой поток от лампы или группы ламп?
8. Как измеряется освещенность в производственном помещении?
Структурная перестройка и экологизация экономики
В условиях перехода России к рыночным отношениям менеджер-консультант по экологическим вопросам должен знать, что устаревшие технологии, являющиеся основным источником загрязнения ОС, обычно наиболее энергоемки, требуют использования дефицитных невозобновляемых ресурсов, характеризуются опасными отходами, поэтому их применение должно сдерживаться будущими расходами на охрану ОС [13].
В условиях рыночной экономики новые технологии, обеспечивающие значительно меньшее давление на ОС, более предпочтительны, конкурентоспособны, не вступают в конфликт с властями и быстро захватывают рынки.
Структурная перестройка экономики должна проводиться в условиях изменения законодательства в области экологизации экономики, т.е. ужесточения госстандартов технологических процессов, во взаимодействии не только с ОС, но и с определением целей производства, обеспечивающих восстановление качества среды обитания, получение продукции, которая бы не наносила ущерба природным объектам в течение всего жизненного цикла.
Экологически ориентированное управление производством представляет собой систему планирования и контроля на разных этапах: 1) составление производственной программы. Если это новое предприятие, то программа предусматривает последовательность соблюдения стадий проектирования, экспертизы, получения разрешительной документации и т.д. Если модернизируется старое предприятие, речь идет о снятии с производства экологически вредной продукции, замене устаревшего оборудования и старой технологии на новую; 2) календарное планирование подготовки и проверки состояния работы оборудования; 3) производственный контроль; 4) Планирование и контроль качества.
При реализации менеджмента на уровне проектирования проектанты невысокой квалификации, идущие на поводу у недальновидного руководства, стремятся скрыть возможные последствия воздействия предприятия на ОС. Такие проекты обычно выглядят громоздкими, мероприятия по выполнению экологических требований, как правило, заимствуются из старых проектов.
Это просматривается уже в отсутствии анализа действующих моделей производства. Проектанты высокой квалификации обычно создают гармоничный документ, в котором проблемы охраны ОС выглядят обоснованно и реалистично. Решение этих проблем обосновывается неоднократным проигрыванием возможных сценариев обострения возникающих ситуаций с подбором для каждой оргтехмероприятий, подкрепленных финансово-экономическими расчетами.
На стадии проектирования важно не обещать и не принимать на себя обязательств, которые не могут быть выполнены; не строить благополучия за счет здоровья окружающих. При строительстве Ростовской АЭС не был учтен международный подход к строительству подобных объектов. Население недостаточно информировалось на стадиях принятия решения, предпроектных испытаний, проектирования и строительства АЭС. Оно было мало осведомлено о возможных вариантах улучшения социально-экономической ситуации в случае строительства этого объекта. Чернобыльский синдром заслонил перед обывателем все, оставив его наедине с последствиями, о которых он хорошо осведомлен из СМИ. В то же время проектирование и строительство Северной ТЭЦ в Москве проходило в условиях широкой гласности, и успешная реализация проекта позволила существенно улучшить энергоснабжение огромной территории города.
Оценка воздействия на окружающую среду (ОВОС) проводится при возникновении угрозы значительного экологического ущерба и используется для прогноза таких последствий, а также нахождения способов снижения отрицательных воздействий предприятия на ОС.
Содержание экологического менеджмента на предприятии включает также экологическую экспертизу, сущность которой рассмотрена выше.
Экологические проблемы регионов не могут быть решены из центра. Но центр может финансово-экономической политикой стимулировать или давление на ОС, или бережное отношение к природе и ресурсам. Однако экологическая безопасность регионов осуществляется на предприятии, поэтому чрезвычайно важна оценка действующего проекта – экологический аудит (см.
гл. 7).
Важнейшей мерой экологического контроля на предприятии является экологическая ревизия. Она предусматривает систематическую документально подтверждаемую оценку руководства предприятия с экологических позиций. Достигается это созданием системы экологического контроля на предприятии.
Крупные предприятия могут создать у себя экологическую службу высокого уровня, что требует больших расходов, которые чаще всего окупаются и приносят экономический эффект. Средние предприятия могут содержать специалиста в ранге менеджера-консультанта по экологическим вопросам. Крупные вопросы экологического аудирования решаются обращением к аудиторским, консультативным, инжиниринговым фирмам.
Мелкие предприятия вынуждены прибегать к услугам соответствующих фирм или решать экологические проблемы на свой страх и риск.
Главная задача
аудита – не наказание, а поиск возможностей избежать последствий загрязнения ОС, которые могут привести предприятие не только к потере части прибыли, но и к закрытию производства.
Аудиторская деятельность оплачивается предприятием, которое подвергается проверке.
Менеджер-консультант по экологическим вопросам должен действовать исходя из целей:
1) защитить и сохранить ОС;
2) обеспечить здоровье людей в рамках производства и ближайшего окружения;
3) экономно и сбалансирование расходовать природные ресурсы.
Менеджер-консультант, полностью отвечающий за экологическую безопасность на предприятии, подчинен непосредственно директору и не может быть включен в штат службы главного инженера в качестве инженера по технике безопасности.
Токсиканты и их специфические биогеохимические особенности
Понятия «вредное вещество» и «токсикант» – ключевые в экотоксикологии.
Вредное вещество – это инородный нехарактерный для природных экосистем ингредиент, оказывающий отрицательное влияние на них и живые организмы, обитающие в этих экосистемах.
Токсиканты –
вещества или соединения, способные оказывать ядовитое действие на живые организмы. В зависимости от характера воздействия и степени проявления токсичности, т. е. способности этих веществ оказывать вредное воздействие на живые организмы, они классифицируются на две большие группы: токсичные и потенциально токсичные. По химической природе вредные вещества, или токсиканты, бывают неорганического происхождения (кадмий, ртуть, свинец, мышьяк, никель, бор, марганец, селен, хром, цинк и др.) и органического (нитразосоединения, фенолы, амины, нефтепродукты, поверхностно-активные вещества, пестициды, формальдегид, бенз(а)пирен и др.). Существует классификация опасности различных химических веществ, попадающих в окружающую среду. В зависимости от степени токсикологического воздействия химические вещества подразделяют на три класса (табл. 3.5).
Наиболее приоритетными для химико-токсикологического анализа являются тяжелые металлы (свинец, ртуть, кадмий, медь, никель, кобальт, цинк), обладающие высокой токсичностью и миграционной способностью.
Поведение этих токсикантов в различных природных средах обусловлено специфичностью их основных биогеохимических свойств: комплексообразующей способностью, подвижностью, биохимической активностью, минеральной и органической формами распространения, склонностью к гидролизу, растворимостью, эффективностью накопления [33]. По характеру взаимодействия с различными лигандами тяжелые металлы считаются промежуточными акцепторами между жесткими и мягкими кислотами [23]. В первом случае для них характерны низкие поляризуемость и электроотрицательность, высокая степень окисления и образование ионных связей, во втором – образование преимущественно ковалентных связей.
Определенная аналогия биогеохимических свойств некоторых тяжелых металлов позволила сгруппировать эти элементы и выявить общие закономерности их токсикологического воздействия на окружающую среду (табл. 3.6).
Примечания: В– высокая, У – умеренная, Н – низкая.
Так, например, медь и цинк характеризуются как наибольшей химической активностью, позволяющей считать их хорошими индикаторами терригенного стока, седиментации, так и высокой эффективностью накопления в водорослях и планктоне, что определяет их особую значимость для биоты [38]. Они являются главными составляющими многих металлоферментов, участвующих в природной селекции аэробных клеток, в окислительно-восстановительных процессах тканей, иммунной реакции, стабилизации рибосом и мембран клеток [43].
Никель и кобальт – биологически активные и канцерогенные. Сравнительно малая подвижность этих элементов обусловливает их достаточно равномерное распределение в природных средах.
Геохимические особенности свинца – малая подвижность и непродолжительное время жизни в атмосфере и фазе раствора природных вод. В поверхностных водах оно составляет несколько лет, а в глубинных – до 100 лет [7].
По химическим свойствам и специфике поведения в различных природных средах кадмий имеет определенную аналогию с цинком. Высокая токсичность и растворимость этого элемента обусловлены большим сродством к SH-группам [4]. В отличие от ртути сродство кадмия к кислороду выражено менее ярко, что объясняет образование его достаточно неустойчивых металлорганических соединений и определенную инертность в окислительно-восстановительных реакциях. Кадмий склонен к активному биоконцентрированию, что приводит в довольно короткое время к его накоплению в избыточных биодоступных концентрациях. Поэтому кадмий по сравнению с другими тяжелыми металлами является наиболее сильным токсикантом почв (Cd > Ni > Си > Zn) [24].
Ртуть – самый токсичный элемент в природных экосистемах. По токсикологическим свойствам соединения ртути классифицируются на следующие группы: элементная ртуть, неорганические соединения, алкилртутные (метил- и этил-) соединения с короткой цепью и другие ртутьорганические соединения, а также комплексные соединения ртути с гумусовыми кислотами [5].
Из этих соединений ртути наиболее токсичны для человека и биоты ртутьорганические соединения. Их доля в речных водах составляет 46% от общего содержания, в донных отложениях -до 6%, в рыбах – до 80–95%. Как неорганические, так и органические соединения ртути высокорастворимы.
Степень загрязнения окружающей среды токсикантами во многом определяется их химически активными миграционными формами и механизмом миграции.
Миграция элементов
– это перенос и перераспределение химических элементов в земной коре и на поверхности Земли.
Сложность биогеохимических процессов, происходящих в атмосферном воздухе, атмосферных осадках, природных водах, донных отложениях, почвах, не позволяет высказать достаточно однозначной точки зрения на соединения тяжелых металлов, определяющих их подвижные формы, и преобладание одной из них в естественных и техногенных процессах. Тем не менее анализ фундаментальных работ позволил сделать следующее заключение: в атмосферном воздухе и атмосферных осадках тяжелые металлы находятся и мигрируют в газообразной и аэрозольной формах, а также в форме органических и неорганических комплексных соединений; в природных водах – в форме свободных ионов, моноядерных гидроксокомплексов, неорганических (сульфатные, хлоридные, карбонатные) и органических (фульватные, гуматные) соединений, взвешенных и коллоидных формах; в донных отложениях – преимущественно во взвешенных формах органического происхождения; в почвах – в водорастворимых ионообменных и непрочно адсорбированных формах.
Управление естественными и социоприродными экосистемами
До недавнего времени управление социоприродной экосистемой осуществлялось в интересах только человеческого общества, что привело бы к глобальному нарушению экологического равновесия и обозначило катастрофу для человечества. Целям новой стратегии для оздоровления системы служит, в частности, экологический менеджмент.
Само управление состоит из оценки состояния ОС, контроля изменения ее параметров, прогноза, принятия решений, их реализации через производственные структуры с помощью структур управления [13].
Безопасное управление природными процессами предполагает контроль качества среды обитания. Уровень экологического контроля зависит от экономического и культурного развития общества. Чем более развито общество, тем эффективнее реализуются процессы социально-экологического управления средой обитания.
Социально-экологическому контролю подлежат все компоненты системы «природа–человек».
Особенность иерархических систем управления заключается в том, что информация о состоянии объекта контроля может быть получена лишь с нижних уровней управляемой системы. А это предопределяет особые (основанные на доверии) отношения между контролирующей и управляющей системами и системой производства. Отсюда концепция современных информационно-управляющих природоохранных систем основывается на знании законов саморегуляции природных систем, на знании возможного предела вмешательства человека в эти саморегулируемые системы, за которым – необратимые катастрофические последствия.
Основные требования к проведению экологического контроля:
· гарантия достижения природоохранной цели путем выявления отклонений от нормативных значений контролируемых величин: атмосферы, гидросферы, почвы, выбросов промышленных предприятий и т.д. Превентивная ориентация контроля;
· отражение в планах производства природоохранной деятельности предприятий;
· эффективность организационной структуры контроля защиты ОС;
· индивидуальный подход к контролю: методы контроля должны быть понятны руководителю предприятия, рядовому работнику и контролеру;
· прогноз изменения состояния среды обитания, выделение признаков приближения ее к опасному состоянию, контроль за критическими состояниями среды: залповыми выбросами, аварийными ситуациями по состоянию ОС и т.д.
· работа по выходу из аварийной или стихийной ситуации, ликвидация возможности развития чрезвычайной ситуации из-за накопленных радиоактивных веществ, химического оружия, устаревших технологий и т.д.
Среди способов контроля различают: прямой непосредственный контроль за состоянием ОС с использованием технических средств по отслеживанию физических, химических, биологических параметров и факторов загрязнения атмосферы, гидросферы и почвы. Для оценки состояния ОС пользуются методом биоиндикации. При этом используется высокая чувствительность некоторых живых организмов к загрязнению, например, хорошими индикаторами загрязнения являются мхи, лишайники и водоросли.
Косвенный способ контроля заключается в использовании законодательных и административных рычагов управления.
Контроль может быть ручным, когда наблюдения за изменением ОС осуществляются вручную, или автоматическим, когда контроль за изменением ОС осуществляется в автоматическом режиме. Среди типовых автоматизированных систем контроля имеются системы контроля загрязнений атмосферы (АНКОС-АГ) и воды (АНКОС-ВГ).
По способу анализа контроль может быть прямым и дистанционным. В отличие от прямого дистанционный метод анализа состояния ОС предусматривает бесконтактный процесс получения информации с помощью аэрофотосъемки или космической съемки.
Поскольку экологическая оценка имеет много неопределенностей, то полезна экспертная оценка
состояния ОС; она применяется в сложных и критических условиях. Это прерогатива специалистов-экспертов высокого класса, принимающих на себя ответственность в принятии решений в сложных экологических ситуациях.
Правовое обеспечение контроля
состоит в выполнении законов по обеспечению сохранности ОС, а также норм правового регулирования использования воды, воздуха, почвы, недр и т.д. Сюда включается лицензионное право организаций на вылов рыбы, отстрел животных, вырубку леса, добычу полезных ископаемых и т.д.
Технологический контроль
связан с соблюдением технологического режима производства, который регулируется нормами и требованиями по обеспечению экологической безопасности среды производства и продукции. Отвечают за технологическое обеспечение производства руководитель предприятия, главный инженер, технолог и эколог-менеджер. Нарушение технологического режима и регламента производства в погоне за прибылью – обычное явление при залповых выбросах и создании аварийной ситуации на вредных производствах.
Экономический контроль
ОС заключается в предпочтении экологически чистого производства и продукта. Налоговый прессинг должен возрастать по отношению к вредному производству и вредному продукту.
Для снижения давления на ОС применяются информационные, предупредительные и карательные методы. Информационные
включают мониторинг изменения параметров ОС, предупредительные – различные виды экологической экспертизы, административно-правовые – экостандарты, разрешения, лицензии и т.д., административно-предупредительные – проверку деятельности объектов возможного загрязнения, экологический аудит и т.д., карательные –
различные формы пресечения (от закрытия предприятия до уголовного преследования виновных), экономические и финансовые меры воздействия.
К информационному обеспечению экологических проблем относятся сбор, обработка, анализ, синтез данных, построение моделей, создание баз данных для пользователей. Первичная экологическая информация собирается с помощью измерительных средств в процессе научно-практической деятельности. Эта информация обладает наивысшей прикладной ценностью. Вторичная информация – результат переработки первичной для дальнейшего использования в экологическом моделировании, мониторинге и экспертизе.
Третичная информация является результатом переработки вторичной для предоставления потребителю для последующего принятия решений.
Экологическое моделирование
занимается изучением экологических объектов и процессов на их моделях для расчета поведения человека в стационарно-изменяющихся условиях ОС, а также для выработки рекомендаций по координированию форм и масштабов хозяйственной деятельности с изменяющимися условиями среды.
Экологический мониторинг –
система наблюдений, оценки и прогноза состояния окружающей природной среды и экологических систем, в том числе и находящихся в условиях антропогенных воздействий. Экологический мониторинг состоит из следующих ступеней: биологический мониторинг отслеживает связь в изменениях ОС с состоянием организмов биоты, в том числе и человека, особое значение придается учету канцерогенных и мутагенных факторов; геоэкологический (природно-хозяйственный) мониторинг обеспечивает наблюдение за природными экосистемами, агробиотой и индустриальными системами; методы этой ступени мониторинга должны определять способность ОС к самовосстановлению, биопродуктивности экосистем и различные ПДК, контроль обеспечивается сетью контрольных пунктов наблюдений и полигонов; биосферный мониторинг отслеживает изменения в биосфере, вызванные антропогенными воздействиями.
В России программа фонового экологического мониторинга осуществляется в ряде биосферных заповедников (Астраханский, Воронежский, Ильменский, Приокско-Террасный, Центрально-Черноземный, Сихоте-Алинский) и на кораблях Госкомгидромета.
Целью экологической экспертизы
является превентивный контроль экологической безопасности, осуществление государственного контроля в области охраны ОС и рационального использования природных ресурсов. Эти функции делегированы государством Министерству природных ресурсов РФ, Государственному комитету РФ по охране окружающей среды и их территориальным органам соответствующими законами РФ.
Заключение экспертной комиссии
обязательно для всех юридических лиц и граждан, деятельность которых связана с воздействием на окружающую природную среду, с природопользованием и т.д.
Положительное заключение экспертной комиссии является одним из обязательных документов для открытия финансирования и кредитования реализации объекта.
Объектами государственной экологической экспертизы являются:
· предпроектные материалы по развитию и размещению производительных сил и отраслей народного хозяйства;
· проекты целевых федеральных социально-экономических и научно-технических программ, связанных с воздействием на ОС;
· проекты федеральных комплексных схем охраны и использования земельных, водных, лесных и других природных ресурсов;
· материалы экологического обследования территории для придания им статуса особо охраняемого природного объекта;
· ТЭО и проекты на строительство, реконструкцию, развитие, ликвидацию объектов и предприятий федерального значения, осуществление которых может нанести вред ОС;
· проекты нормативно-технической и инструктивно-методической документации в части охраны ОС и рационального природопользования, регламентирующих хозяйственную деятельность.
Управление водной системой
Рассмотрим теперь более сложный пример управления водной системой [50], в которой учтено 12 переменных: емкость трех водохранилищ, мощности двух электростанций, распределение рабочей емкости и мертвого объема в водохранилище, питающем одну из электростанций, распределение резервной системы для регулирования паводков в трех других водохранилищах и ежегодная требуемая отдача воды для ирригации и энергетики. Структура этой системы представлена на рис. 12.5.
Введем следующие обозначения:
– валовая прибыль в t-м году, получаемая при определенной стратегии управления ресурсами как функция от вектор-функции ,компонентами которой являются различные факторы, влияющие на величину прибыли: запроектированные параметры в системе дамб, турбогенераторов и оросительных каналов и т.д.;
– затраты, связанные с эксплуатацией, ремонтом или заменой оборудования в t-м году, как функция от вектор-функции ;K
–первоначальные капиталовложения на создание системы водных сооружений и подготовку оборудования.
Вкладывая деньги в какое-либо предприятие, следует сравнить доход, получаемый при различных вариантах политики, с доходом, получаемым от вложения той же суммы денег в банк под ежегодный процент. Учитывая формулу сложного процента, т. е. используя дисконтный множитель
, получим следующие выражения для экономической эффективности многоцелевой системы водных ресурсов, эксплуатируемой в течение T лет: (12.10)где
= уt, = х.Анализируя формулу (12.10), заметим, что поскольку в знаменателе стоит величина
, вклад Еt(уt) - Мt(х) в R оказывается тем меньшим, чем позже получена прибыль. Отсюда следует, что нет никакого смысла сохранять ресурсы для будущего и что оптимальной всегда будет политика наиболее интенсивной эксплуатации ресурсов без чрезмерного увеличения величины Мt(х). Другими словами, уравнение (12.10) оправдывает уничтожение всех естественных ресурсов в максимально короткий срок, ограниченный лишь экономическими и технологическими возможностями.Естественный путь – ввести наряду с уравнением (12.10) ограничения (граничные условия), чтобы исключить случаи, когда ежегодно изымаемое количество ресурсов данного типа превышает величину их максимальной величины, сохраняющей устойчивость всей системы. Заметим, что эти ограничения – постоянный источник конфликтов всех заинтересованных групп пользователей.
Одновременно можно учесть и экономические, и биологические факторы, если ввести первые непосредственно в показатель R, а вторые – в граничные условия.
Рассмотрим сначала метод оценки функции Еt(уt).
Во многих случаях прибыль можно рассчитать непосредственно в денежных единицах. Ежегодный доход от орошения земель, постройки электростанций или плотин можно определить, найдя такие элементы вектора уt, как:
y1 –
урожай, собранный с орошаемой площади;
y2 – количество электроэнергии;
y3 –
ущерб, причиняемый паводками, которого удалось избежать в результате постройки плотин, и т.д.
Дальше можно вычислить посредством моделирования на ЭВМ доходность различных членов в течение T лет с использованием показателя R. Затем выбрать проект, который соответствует максимальному значению R и совместим с граничными условиями (ограничениями); последние диктуются необходимостью сохранения естественных ресурсов и желанием использовать их не только для получения электроэнергии или орошения, но и для организации отдыха населения.
Различные способы математического анализа и моделирования рассматриваемой водной системы описаны в работе Мааса [50], в которой перечислены основные этапы исследования. В результате исследования была создана программа для моделирования этой сложной системы. Это следующие этапы:
1. Вначале была схематически описана структура системы в целом (рис. 12.5) и найдены аналогичные случаю одного водохранилища математические уравнения, устанавливающие внутренние функциональные связи между отдельными ее частями. Эти взаимосвязи таковы:
Зависимые переменные Прибыль, получаемая от ирригации Капитальные затраты на строительство ирригационных сооружений, распределительных систем и насосных станций Капитальные затраты на строительство гидроэлектростанций Ущерб, причиняемый паводками Капитальные затраты |
Независимые переменные Обеспеченная годовая отдача воды для ирригации Установленная мощность электростанций Емкость водохранилища Расходы воды Данные о стоках воды во всех частях системы, полученные осреднением наблюдений за 60 лет |
2. Были заданы правила работы системы. В частности, с февраля по август система работает следующим образом:
§ вода выпускается из водохранилища С до тех пор, пока не будет достигнута заданная отдача, соответствующая предельной пропускной способности станции G,
или водохранилище С не опорожнится;
§ та же операция повторяется по отношению к водохранилищу D;
§ если возможно, назначается дополнительный пропуск из водохранилища А до тех пор, пока не будет достигнута заданная отдача, соответствующая предельной пропускной способности станции G, или водохранилище А не опорожнится;
§ если это возможно, отбирают дополнительное количество воды из водохранилища В
до тех пор, пока не будет достигнута заданная отдача, соответствующая предельной
§ пропускной способности станций В и G,
или в водохранилище В не останется только мертвый объем;
§ специально предусматривается емкость для регулирования паводков в апреле, мае и июне;
§ в течение марта, апреля и мая вода от отработки резервной емкости пропускается через турбины электростанций В и G
до их полной пропускной способности, а вода из водохранилища В обеспечивает требуемую отдачу для ирригации.
Рассмотренная функциональная модель – лишь одна из многих, изученных с помощью этой методики. Она показывает, что для создания компьютерной программы, позволяющей изучать различные стратегии управления, необходим огромный объем информации и детальное знание процессов принятия решений.
Контрольные вопросы
1. Каковы основные этапы системного анализа? Дайте их краткое описание.
2. Как вы понимаете обратную связь? Приведите примеры положительной и отрицательной обратной связи.
Устойчивость работы объектов народного хозяйства в чрезвычайных ситуациях
Устойчивость работы объектов народного хозяйства в чрезвычайных ситуациях определяется их способностью выполнять свои функции в этих условиях, а также приспособленностью к восстановлению в случае повреждения. В условиях чрезвычайных ситуаций промышленные предприятия должны сохранять способность выпускать продукцию, а транспорт, средства связи, линии электропередач и прочие аналогичные объекты, не производящие материальные ценности, – обеспечивать нормальное выполнение своих задач.
Для того чтобы объект сохранил устойчивость в условиях чрезвычайных ситуаций, проводят комплекс инженерно-технических, организационных и других мероприятий, направленных на защиту персонала от воздействия опасных и вредных факторов, возникающих при развитии чрезвычайной ситуации, а также населения, проживающего вблизи объекта. Необходимо учесть возможность вторичного образования токсичных, пожароопасных, взрывоопасных систем и др.
Кроме того, проводится анализ уязвимости объекта и его элементов в условиях чрезвычайных ситуаций. Разрабатываются мероприятия по повышению устойчивости объекта и его подготовке в случае повреждения к восстановлению.
С целью защиты работающих на тех предприятиях, где в процессе производства используют взрывоопасные, токсичные и радиоактивные вещества, строят убежища, а также разрабатывают специальный график работы персонала в условиях заражения вредными веществами. Должна быть подготовлена система оповещения персонала и населения, проживающего вблизи объекта, о возникшей на нем чрезвычайной ситуации. Персонал объекта должен быть обучен выполнению конкретных работ по ликвидации последствий чрезвычайных ситуаций в очаге поражения.
На устойчивость работы объекта в условиях чрезвычайных ситуаций оказывают влияние следующие факторы: район расположения объекта; внутренняя планировка и застройка территории объекта; характеристика технологического процесса (используемые вещества, энергетические характеристики оборудования, его пожаро- и взрывоопасность и др.); надежность системы управления производством и ряд др.
Район расположения объекта определяет величину, а также вероятность воздействия поражающих факторов природного происхождения (землетрясения, наводнения, ураганы, оползни и проч.). Важное значение имеет дублирование транспортных путей и систем энергоснабжения. Так, если предприятие расположено вблизи судоходной реки, в случае разрушения железнодорожных или трубопроводных магистралей подвоз сырья или вывоз готовой продукции может осуществляться водным транспортом. Существенное влияние на последствия чрезвычайных ситуаций могут оказывать метеорологические условия района (количество выпадающих осадков, направление господствующих ветров, минимальные и максимальные температуры воздуха, рельеф местности).
Внутренняя планировка и плотность застройки территории объекта оказывают значительное влияние на вероятность распространения пожара, на разрушения, которые может вызвать ударная волна, образующаяся при взрыве, на размеры очага поражения при выбросе в окружающую среду токсичных веществ и др. В качестве примера в табл. 25.3 показана вероятность распространения пожара в зависимости от расстояния между зданиями.
Необходимо учитывать и характер застройки, окружающей объект. Так, наличие вблизи данного объекта опасных предприятий, в частности химических, может в значительной степени усугубить последствия возникшей на объекте чрезвычайной ситуации.
Следует подробно изучить специфику технологического процесса, оценить возможность взрыва оборудования (например, сосудов, работающих под давлением), основные причины возникновения пожаров, количество используемых в процессе сильнодействующих, ядовитых и радиоактивных веществ. Для повышения устойчивости объекта в чрезвычайной ситуации необходимо рассмотреть возможность изменения технологии, снижения мощности производства, а также его переключения на производство другой продукции. Необходимо разработать также способ быстрой и безаварийной остановки производства в чрезвычайных ситуациях.
Рассмотрим теперь пути повышения устойчивости функционирования наиболее важных видов технических систем и объектов.
Системы водоснабжения
представляют собой крупный комплекс зданий и сооружений, удаленных друг от друга на значительные расстояния. При чрезвычайных ситуациях, как правило, все элементы этой системы не могут быть выведены из строя одновременно. При проектировании системы водоснабжения необходимо предусмотреть меры их защиты в чрезвычайных ситуациях. Ответственные элементы системы водоснабжения целесообразно размещать ниже поверхности земли, что повышает их устойчивость. Для города надо иметь два-три источника водоснабжения, а для промышленных магистралей (промышленного водоснабжения) – не менее двух-трех вводов от городских магистралей. Следует предусмотреть возможность ремонта данных систем без их остановки и отключения водоснабжения других потребителей.
Весьма важной является система водоотведения загрязненных (сточных) вод (система канализации). В результате ее разрушения создаются условия для развития болезней и эпидемий. Скопление сточных вод на территории объекта затрудняет проведение аварийно-спасательных и восстановительных работ. Повышение устойчивости системы канализации достигается созданием резервной сети труб, по которым может отводиться загрязненная вода при аварии основной сети. Должна быть разработана схема аварийного выпуска сточных вод непосредственно в водоемы. Насосы, используемые для перекачки загрязненной воды, комплектуются надежными источниками электропитания.
В разных чрезвычайных ситуациях электрические сооружения и сети могут получить различные разрушения и повреждения. Их наиболее уязвимыми частями являются наземные сооружения (электростанции, подстанции, трансформаторные станции), а также воздушные линии электропередач. В современных крупных энергосистемах применяются различные автоматические устройства, способные практически мгновенно отключить поврежденные электроисточники, сохраняя работоспособность системы в целом.
Для повышения устойчивости системы электроснабжения в первую очередь целесообразно заменить воздушные линии электропередач на кабельные (подземные) сети, использовать резервные сети для запитки потребителей, предусмотреть автономные резервные источники электропитания объекта (передвижные электрогенераторы).
Весьма важно обеспечить устойчивость системы газоснабжения, так как при ее разрушении или повреждении возможны возникновение пожаров и взрывов, а также выход газа в окружающую среду, что значительно затрудняет проведение аварийно-спасательных и восстановительных работ.
Основные мероприятия по увеличению устойчивости систем газоснабжения следующие: сооружение подземных обводных газопроводов (бассейнов), обеспечивающих подачу газа в аварийных условиях; использование устройств, обеспечивающих возможность работы оборудования при пониженном давлении в газопроводах; создание на предприятиях аварийного запаса альтернативного вида топлива (угля, мазута); осуществление газоснабжения объекта от нескольких источников (газопроводов); создание подземных хранилищ газа высокого давления; использование на закольцованных системах газоснабжения отключающих устройств, установленных на распределительной сети.
В результате чрезвычайной ситуации может быть серьезно повреждена система теплоснабжения населенного пункта или предприятия, что создает серьезные трудности для их функционирования, особенно в холодный период года. Так, разрушение трубопроводов с горячей водой или паром может повлечь их затопление и затруднить локализацию и ликвидацию аварии. Наиболее уязвимые элементы систем теплоснабжения – теплоэлектроцентрали и районные котельные.
Основным способом повышения устойчивости внутреннего оборудования тепловых сетей является их дублирование.
Необходимо также обеспечить возможность отключения поврежденных участков теплосетей без нарушения ритма теплоснабжения потребителей, а также создать системы резервного теплоснабжения.
В результате воздействия ударной волны, возникающей при взрывах различного происхождения (при аварии газопроводов, при военных действиях), могут серьезно пострадать подземные коммуникации, включая подземные переходы и транспортные сооружения (эстакады, путепроводы, мосты и др.). Наибольшее разрушение различных мостовых сооружений вызывает боковая ударная волна, направленная перпендикулярно пролетному строению моста.
Весьма опасным для этих сооружений является воздействие ударных волн, отраженных от поверхности воды (реки, водоема). Воздействие ударной волны на подземные сооружения (коллекторы) может вызвать их повреждение. Особенно опасно в этом случае разрушение трубопроводов с горячей водой или паром, а также газопроводов.
Основным средством повышения устойчивости рассмотренных сооружений от воздействия ударной волны является повышение прочности и жесткости конструкций.
Особое внимание следует уделять устойчивости складов и хранилищ ядовитых, пожаро- и взрывоопасных веществ в условиях чрезвычайных ситуаций. Это достигается проведением следующих мероприятий: переводом указанных материалов на хранение из наземных складов в подземные, хранением минимального количества ядовитых, пожаро- и взрывоопасных веществ, а также безостановочным использованием этих веществ при поступлении на объект минуя склад («работа с колес»).
Для повышения устойчивости работы объектов в чрезвычайных ситуациях необходимо уделять значительное внимание защите рабочих и служащих. Для этого на объектах строятся убежища и укрытия, предназначенные для защиты персонала, создается и поддерживается в постоянной готовности система оповещения рабочих и служащих объекта, а также проживающего вблизи объекта населения о возникновении чрезвычайной ситуации. Персонал, обслуживающий объект, должен знать о режиме его работы в случае возникновения чрезвычайной ситуации, а также быть обученным выполнению конкретных работ по ликвидации очагов поражения.
Виды ответственности за экологические правонарушения
Эколого-правовая ответственность является разновидностью общеюридической ответственности, но в то же время отличается от иных видов юридической ответственности.
Эколого-правовая ответственность рассматривается в трех взаимосвязанных аспектах:
· как государственное принуждение к исполнению требований, предписанных законодательством;
· как правоотношение между государством (в лице его органов) и правонарушителями (которые подвергаются санкциям);
· как правовой институт, т.е. совокупность юридических норм, различных отраслей права (земельного, горного, водного, лесного, природоохранного и др.). Экологические правонарушения наказываются в соответствии с требованиями законодательства Российской Федерации. Конечная цель экологического законодательства и каждой отдельной его статьи заключается в охране от загрязнения, обеспечении правомерного использования окружающей среды и ее элементов, охраняемых законом. Сферой действия экологического законодательства являются окружающая среда и ее отдельные элементы. Предметом правонарушения признается элемент окружающей среды. Требования закона предполагают установление четкой причинной связи между допущенным нарушением и ухудшением окружающей среды.
Субъектом экологических правонарушений является лицо, достигшее 16-летнего возраста, на которое нормативно-правовыми актами возложены соответствующие должностные обязанности (соблюдение правил охраны окружающей среды, контроль за соблюдением правил), либо любое лицо, достигшее 16-летнего возраста, нарушившее требования экологического законодательства.
Для экологического правонарушения характерно наличие трех элементов:
· противоправность поведения;
· причинение экологического вреда (или реальная угроза) либо нарушение иных законных прав и интересов субъекта экологического права;
· причинная связь между противоправным поведением и нанесенным экологическим вредом или реальной угрозой причинения такого вреда либо нарушением иных законных прав и интересов субъектов экологического права.
Ответственность за экологические правонарушения служит одним из основных средств обеспечения выполнения требований законодательства по охране окружающей среды и использованию природных ресурсов. Эффективность действия данного средства во многом зависит, прежде всего, от государственных органов, уполномоченных применять меры юридической ответственности к нарушителям экологического законодательства. В соответствии с российским законодательством в области охраны окружающей среды должностные лица и граждане за экологические правонарушения несут дисциплинарную, административную, уголовную, гражданско-правовую, материальную ответственность, а предприятия – административную и гражданско-правовую.
Дисциплинарная ответственность
наступает за невыполнение планов и мероприятий по охране природы и рациональному использованию природных ресурсов, за нарушение экологических нормативов и иных требований природоохранительного законодательства, вытекающих из трудовой функции или должностного положения. Дисциплинарную ответственность несут должностные лица и иные виновные работники предприятий и организаций в соответствии с положениями, уставами, правилами внутреннего распорядка и другими нормативными актами (ст. 82 Закона «Об охране окружающей природной среды»). К нарушителям в соответствии с Кодексом законов о труде (с изменениями и дополнениями от 25 сентября 1992 г.) могут быть применены следующие дисциплинарные взыскания: замечание, выговор, строгий выговор, увольнение с работы, другие наказания (ст. 135).
Материальная ответственность
также регулируется Кодексом законов о труде РФ (ст. 118–126). Такую ответственность несут должностные лица и иные работники предприятия, по вине которых предприятие понесло расходы по возмещению вреда, причиненного экологическим правонарушением.
Применение административной ответственности регулируется как природоохранительным законодательством, так и Кодексом РСФСР об административных правонарушениях 1984 г. (с изменениями и дополнениями). Закон «Об охране окружающей природной среды» расширил перечень составов экологических правонарушений, при совершении которых виновные должностные, физические и юридические лица несут административную ответственность.
Такая ответственность наступает за превышение предельно допустимых выбросов и сбросов вредных веществ в окружающую среду, невыполнение обязанностей по проведению государственной экологической экспертизы и требований, содержащихся в заключении экологической экспертизы, предоставление заведомо неправильных и необоснованных заключений, несвоевременное предоставление информации и предоставление искаженной информации, отказ от предоставления своевременной, полной, достоверной информации о состоянии природной среды и радиационной обстановке и т.д.
Конкретный размер штрафа определяется органом, налагающим штраф, в зависимости от характера и вида правонарушения, степени вины правонарушителя и причиненного вреда. Административные штрафы налагаются уполномоченными на то государственными органами в области охраны окружающей среды, санитарно-эпидемиологического надзора РФ. При этом постановление о наложении штрафа может быть обжаловано в суд или арбитражный суд. Наложение штрафа не освобождает виновных от обязанности возмещения причиненного вреда (ст. 84 Закона «Об охране окружающей природной среды»).
В новом Уголовном кодексе РФ экологические преступления выделены в отдельную главу (гл. 26). В нем предусмотрена уголовная ответственность за нарушение правил экологической безопасности при производстве работ, нарушение правил хранения, утилизации экологически опасных веществ и отходов, нарушение правил безопасности при обращении с микробиологическими или другими биологическими агентами или токсинами, загрязнение вод, атмосферы и моря, нарушение законодательства о континентальном шельфе, порчу земли, незаконную добычу водных животных и растений, нарушение правил охраны рыбных запасов, незаконную охоту, незаконную порубку деревьев и кустарников, уничтожение или повреждение лесных массивов.
Применение мер дисциплинарной, административной или уголовной ответственности за экологические правонарушения не освобождает виновных лиц от обязанности возмещения вреда, причиненного экологическим правонарушением.
Закон « Об охране окружающей природной среды» стоит на той позиции, что предприятия, организации и граждане, причиняющие вред окружающей среде, здоровью или имуществу граждан, народному хозяйству загрязнением окружающей среды, порчей, уничтожением, повреждением, нерациональным использованием природных ресурсов, разрушением естественных экологических систем и другими экологическими правонарушениями, обязаны возместить его в полном объеме в соответствии с действующим законодательством (ст. 86).
Гражданско-правовая ответственность
в сфере взаимодействия общества и природы заключается главным образом в возложении на правонарушителя обязанности возместить потерпевшей стороне имущественный или моральный вред в результате нарушения правовых экологических требований.
Ответственность за экологические правонарушения выполняет ряд основных функций:
· стимулирующую к соблюдению норм права окружающей среды;
· компенсаторную, направленную на возмещение потерь в природной среде, возмещение вреда здоровью человека;
· превентивную, заключающуюся в наказании лица, виновного в совершении экологического правонарушения.
Экологическое законодательство предусматривает три уровня наказания: за нарушение; нарушение, повлекшее значительный ущерб; нарушение, повлекшее смерть человека (тяжкие последствия). Смерть человека вследствие экологического преступления оценивается законом как неосторожность (совершенное по небрежности или легкомыслию). Видами наказаний при экологических нарушениях могут быть штраф, лишение права занимать определенные должности, лишение права заниматься определенной деятельностью, исправительные работы, ограничение свободы, лишение свободы.
Одним из самых тяжких экологических преступлений является экоцид – массовое уничтожение растительного мира (растительных сообществ земли России или отдельных ее регионов) или животного мира (совокупность живых организмов всех видов диких животных, населяющих территорию России или определенный ее регион), отравление атмосферы и водных ресурсов (поверхностные и подземные воды, которые используются или могут быть использованы), а также совершение иных действий, способных вызвать экологическую катастрофу.
Общественная опасность экоцида состоит в угрозе или нанесении огромного вреда окружающей природной среде, сохранению генофонда народа, животного и растительного мира.
Экологическая катастрофа проявляется в серьезном нарушении экологического равновесия в природе, разрушении устойчивого видового состава живых организмов, полном или существенном сокращении их численности, в нарушении циклов сезонных изменений биотического кругооборота веществ и биологических процессов. Мотивом экоцида может быть ложно понятые интересы военного или государственного характера, совершение действий с прямым или косвенным умыслом.
Успех в наведении экологического правопорядка достигается постепенным наращиванием общественного и государственного воздействия на злостных правонарушителей, оптимальным сочетанием воспитательных, экономических и правовых мер.
Контрольные вопросы
1. Что регулирует экологическое право?
2. Что представляет собой экологическое правонарушение?
3. Как Закон «Об охране окружающей природной среды» определяет экологическое правонарушение?
4. Какие виды ответственности за экологические правонарушения вы знаете?
5. Какие функции выполняет ответственность за экологические правонарушения?
6. Что такое экоцид?
Виды вредных веществ
Выполнение различных видов работ в промышленности сопровождается выделением в воздушную среду вредных веществ. Вредное вещество – это вещество, которое в случае нарушения требований безопасности может вызвать производственные травмы, профессиональные заболевания или отклонения в состоянии здоровья, обнаруживаемые как в процессе работы, так и в отдаленные сроки жизни настоящих и последующих поколений.
Наиболее благоприятен для дыхания атмосферный воздух, содержащий (% по объему) азота – 78,08, кислорода – 20,95, инертных газов – 0,93, углекислого газа – 0,03, прочих газов – 0,01.
Необходимо обращать внимание и на содержание в воздухе заряженных частиц – ионов. Так, например, известно благотворное влияние на организм человека отрицательно заряженных ионов кислорода воздуха.
Вредные вещества, выделяющиеся в воздух рабочей зоны, изменяют его состав, в результате чего он существенно может отличаться от состава атмосферного воздуха.
При проведении различных технологических процессов в воздух выделяются твердые и жидкие частицы, а также пары и газы. Пары и газы образуют с воздухом смеси, а твердые и жидкие частицы – аэродисперсные системы – аэрозоли. Аэрозолями называют воздух или газ, содержащие в себе взвешенные твердые или жидкие частицы. Аэрозоли принято делить на пыль, дым, туман. Пыли или дымы – это системы, состоящие из воздуха или газа и распределенных в них частиц твердого вещества, а туманы – системы, образованные воздухом или газом и частицами жидкости.
Размеры твердых частиц пылей превышают 1 мкм1, а размеры твердых частиц дыма меньше этого значения. Различают крупнодисперсную (размер твердых частиц более 50 мкм), среднедисперсную (от 10 до 50 мкм) и мелкодисперсную (размер частиц менее 10 мкм) пыль. Размер жидких частиц, образующих туманы, обычно лежит в пределах от 0,3 до 5 мкм.
1 1мкм (1 микрометр) = 10-6 м.
Проникновение вредных веществ в организм человека происходит через дыхательные пути (основной путь), а также через кожу и с пищей, если человек принимает ее, находясь на рабочем месте.
Действие этих веществ следует рассматривать как воздействие опасных или вредных производственных факторов, так как они оказывают негативное (токсическое2) действие на организм человека. В результате воздействия этих веществ у человека возникает отравление – болезненное состояние, тяжесть которого зависит от продолжительности воздействия, концентрации и вида вредного вещества.
2 Токсичность – ядовитость, способность некоторых химических и биологических веществ оказывать вредное воздействие на живые организмы.
Существуют различные классификации вредных веществ, в основу которых положено их действие на человеческий организм. В соответствии с наиболее распространенной (по Е.Я. Юдину и С.В. Белову) классификацией вредные вещества делятся на шесть групп: общетоксические, раздражающие, сенсибилизирующие, канцерогенные, мутагенные, влияющие на репродуктивную (детородную) функцию человеческого организма.
Общетоксические вещества
вызывают отравление всего организма. Это оксид углерода, свинец, ртуть, мышьяк и его соединения, бензол и др.
Раздражающие вещества
вызывают раздражение дыхательного тракта и слизистых оболочек человеческого организма. К этим веществам относятся: хлор, аммиак, пары ацетона, оксиды азота, озон и ряд других веществ.
Сенсибилизирующие3
вещества действуют как аллергены, т.е. приводят к возникновению аллергии4 у человека. Этим свойством обладают формальдегид, различные нитросоединения, никотинамид, гексахлоран и др.
3 Сенсибилизация – повышение реактивной чувствительности клеток и тканей человеческого организма.
4 Аллергия – необычные, ненормальные, реакции организма, например появление сыпи.
Воздействие канцерогенных веществ
на организм человека приводит к возникновению и развитию злокачественных опухолей (раковых заболеваний). Канцерогенными являются оксиды хрома, 3,4-бензпирен, бериллий и его соединения, асбест и др.
Мутагенные вещества
при воздействии на организм вызывают изменение наследственной информации. Это радиоактивные вещества, марганец, свинец и т.д.
Среди веществ, влияющих на репродуктивную функцию человеческого организма, следует в первую очередь назвать ртуть, свинец, стирол, марганец, ряд радиоактивных веществ и др.
Пыль, попадая в организм человека, оказывает фиброгенное воздействие, заключающееся в раздражении слизистых оболочек дыхательных путей. Оседая в легких, пыль задерживается в них. При длительном вдыхании пыли возникают профессиональные заболевания легких – пневмокониозы. При вдыхании пыли, содержащей свободный диоксид кремния (SiO2), развивается наиболее известная форма пневмокониоза – силикоз. Если диоксид кремния находится в связанном с другими соединениями состоянии, возникает профессиональное заболевание – силикатоз. Среди силикатозов наиболее распространены асбестоз, цементоз, талькоз.
Для воздуха рабочей зоны производственных помещений в соответствии с ГОСТ 12.1.005-88 устанавливают предельно допустимые концентрации (ПДК) вредных веществ. ПДК выражаются в миллиграммах (мг) вредного вещества, приходящегося на 1 кубический метр воздуха, т. е. мг/м3.
В соответствии с указанным выше ГОСТом установлены ПДК для более чем 1300 вредных веществ. Еще приблизительно для 500 вредных веществ установлены ориентировочно безопасные уровни воздействия (ОБУВ).
По ГОСТ 12.1.005-88 все вредные вещества по степени воздействия на организм человека подразделяются на следующие классы: 1 – чрезвычайно опасные, 2 – высокоопасные, 3 – умеренно опасные, 4 – малоопасные. Опасность устанавливается в зависимости от величины ПДК, средней смертельной дозы и зоны острого или хронического действия.
Если в воздухе содержится вредное вещество, то его концентрация не должна превышать величины ПДК.
При одновременном присутствии в воздушной среде нескольких вредных веществ, обладающих однонаправленным действием, должно соблюдаться условие:
где С1, С2, С3,…,Сn–
фактические концентрации вредных веществе воздухе рабочей зоны, мг/м3;
, , ,…, – предельно допустимые концентрации этих веществ в воздухе рабочей зоны.
Примеры предельно допустимых концентраций различных веществ представлены в табл. 15.1.
Задача об оптимальном рационе питания
Выше рассмотрены простейшие модели динамики популяций с учетом конкуренции за пищевые ресурсы и влияния негативных факторов (например, эпидемий). Эти модели можно использовать для качественного анализа роста народонаселения. Конечно, рост численности населения сильно различается по разным странам и даже в развитых странах темпы роста неодинаковы. Например, в Дании, Швеции, Германии, Австрии этот показатель колеблется около нулевого значения. В таких странах, как Италия, Польша, Канада, США, рождаемость пока еще превышает смертность. Однако в целом в большинстве развитых стран ежегодный прирост населения составляет примерно 0,6% в год, тогда как в развивающихся странах – 2% в год.
В целом происходит стремительный рост населения на планете, что ставит насущную жизненную проблему управления природными ресурсами. При этом все отрасли управления ресурсами объединяет одна наука – экология и одна общая проблема – проблема оптимизации и, наконец, необходимость использовать одни и те же методы – взятие выборок, статистический анализ, математический анализ, логические процедуры, связанные с исследованием операций и анализом систем, применение вычислительной техники. Конечно, анализ и решение такой проблемы и даже какой-либо ее части представляет собой труднейшую задачу [30].
Начнем с рассмотрения простейшей задачи об оптимальном рационе, математическая модель которой допускает наглядную геометрическую интерпретацию. Пусть имеется п продуктов питания (хлеб, мясо, молоко, картофель и т.д.) и т
полезных веществ (жиры, белки, углеводы и т.п.). Обозначим через aij – содержание i-го вещества в единице j-го продукта, через bi, – потребность индивидуума в i-м веществе (скажем, в месяц) и через cj, – цену единицы j
-го продукта.
Обозначив потребление индивидуумом j-го продукта через хi, получаем задачу о выборе наиболее дешевого рациона питания (стоимости месячной продовольственной потребительской корзины):
(11.1)при ограничениях
(11.2)и
(11.3)
Такая задача называется задачей линейного программирования (в стандартной форме), общая теория которой рассмотрена, например, в [2].
Прежде чем исследовать задачу (11.1)–(11.3), заметим, что ее можно представить как задачу минимизации целевой функции f(x) = . на множестве точек (x1,...,xn), удовлетворяющих условиям (11.2) и (11.3). Такое множество называется полиэдром и обозначается Р. Итак, мы имеем экстремальную задачу
f(х) > min, х Î Р .
(11.4)
Выясним, что представляет собой данный полиэдр Р на плоскости x1Ox2 в случае двух продуктов x1 и x2. Из неравенств (11.3) вытекает, что Р
расположен в первом квадранте, а каждое неравенство (11.2) геометрически определяет множество точек, лежащих по одну сторону от прямой (рис. 11.1), т. е. полиэдр Р представляет собой неограниченное множество в первом квадранте, лежащее вне области, ограниченной многоугольником OABCDEF.
Для удобства введем линии уровня целевой функции, т. е. линии, на которых в плоскости х1Oх2 целевая функция
f(х)=с1x1+с2x2
(11.5)
принимает постоянное значение, например, a, и обозначим ее Za. Очевидно, каждая линия уровня Za={(x1,x2):f(x)=a} является прямой; при этом gradf(x)= является вектором N,
перпендикулярным линии уровня и направленным (в данном случае) в сторону увеличения a. Таким образом, для нахождения оптимального решения нам следует перемещать линию уровня до касания с многоугольником OABCDE,
при этом оптимальная прямая Z . коснется либо какой-то вершины (в нашем случае С), либо какого-либо ребра (например, СВ или CD при определенном изменении параметров с1 и с2).
Из приведенной геометрической интерпретации вытекает, что минимум обязательно достигается на одной из вершин многоугольника, поэтому его можно было бы найти методом перебора, сравнивая между собой значения целевой функции во всех вершинах. Конечно, метод перебора в принципе годится и в случае п переменных, однако при больших значениях п он неэффективен.
Поэтому возникли и развиваются методы, позволяющие сформулировать более обозримые и эффективные критерии оптимальности. Начало им было положено работами акад. Л.В. Канторовича (1939 г.). Не углубляясь в суть этих методов, приведем пример одной многокритериальной модели.
В предыдущей задаче мы рассматривали одну целевую функцию. Однако на практике часто встречается ситуация, когда целенаправленная человеческая деятельность преследует сразу несколько целей. Такие задачи получили название многокритериальных. Методы их решения проиллюстрируем на только что рассмотренном примере составления оптимального рациона, несколько усложнив его.
Допустим, надо решить задачу об оптимальном рационе, максимизировав в нем первый продукт. Тогда наша математическая модель выглядит следующим образом:
(11.6)
Прежде чем приступить к решению, обсудим задачу, чтобы лучше понять ее специфику. Итак, забудем на время о первой целевой функции из (11.6). Тогда не составляет труда найти решение задачи:
maxf2(x)=f2(E), xÎP (рис. 11.2). (11.7)
Однако значение первой целевой функции может быть значительно больше оптимального . Совершенно аналогично обстояло бы дело, если бы мы забыли о второй целевой функции и искали минимум первой целевой функции: может быть много меньше f2(Д). Приведем наиболее употребительный метод решения многокритериальных задач (в данном примере – двухкритериальной задачи), а именно сведение двух критериев к одному.
1. Для реализации этого метода необходимо «взвесить» относительную важность каждого из критериев, т. е. выбрать из внемодельных соображений число e, 0 < e < 1, а затем построить одну целевую функцию
(11.8)
Если e=1. то в расчет принимается только первая целевая функция, а если e=0, то только вторая (рис. 11.1 и 11.2). Глубокое знание реальной проблемы и накопленный опыт могут позволить выбрать 0<e<1 так, чтобы, решив оптимизационную задачу с единственной целевой функцией, можно было бы получить удовлетворительное решение для исходной постановки задачи с двумя целевыми функциями (рис. 11.3).Встретив трудности при решении двухкритериальной задачи, можно заменить ее однокритериальной, решать которую мы умеем.
Задача поиска
Более сложными, чем задачи линейного программирования, являются задачи выпуклого программирования. Прежде чем привести пример такой задачи, связанной с безопасностью жизнедеятельности, дадим некоторые определения из теории выпуклого анализа [39].
Определение 1. Множество Х из пространства Rn называется выпуклым, если из того, что две точки у и z принадлежат этому множеству, вытекает, что и весь отрезок {у,z}={хÎRn:х=lу+(1-l)z, 0
l1, соединяющий эти точки, также принадлежит этому множеству.Очевидным примером выпуклых множеств является внутренность круга, шара, эллипсоида, куба. На рис. 11.4 а, б приведены примеры невыпуклых множеств на плоскости R2.
Определение 2. Функция f(x), определенная на выпуклом множестве xÌ Rn, называется выпуклой, если для любых двух точек у и z, принадлежащих X, и любого lÎx[0,1] (тогда отрезок [ly+(1-l)z], 0
l1, целиком принадлежит X) выполняется неравенство , (11.9)Замечание. Если неравенство (11.9) имеет противоположный знак, то функция f(x)
называется вогнутой.
Проще всего представить график выпуклой (или вогнутой) функции на плоскости (рис. 11.5).
Правая часть неравенства (11.9) представляет собой отрезок АВ, соединяющий точки (y,f(y))=АиВ=(z,f(z)), причем каждая точка этого отрезка (на рисунке взята точка С) выше соответствующей точки графика (на рисунке точка D).
Если функция f(x) достаточно гладкая, то условия выпуклости (вогнутости) можно выразить через ее вторую производную.
Действительно, согласно теореме Лагранжа в некоторой точке Е (рис. 11.5) касательная к графику функции АВ лежит ниже этого графика. Уравнение этой касательной Y = f(x) + f'’(x)(x-x), следовательно, f(x)- f(x) – f’(x)(x-x)
0, откуда в силу формулы Тейлорагде 0<Q<1.
Деля последнее неравенство на (х-x)2 и далее переходя к пределу при х >
x, получаем, что
f”(x)
0. (11.10)В силу произвольности точки x это неравенство справедливо на всем отрезке [у, z] и является условием выпуклости (в случае вогнутости справедливо обратное неравенство).
Для иллюстрации рассмотрим два простых примера.
Пример 1. f(x) =ex, xÎ
(-¥,+¥), f(“) = eх > 0, следовательно, показательная функция выпукла на всей оси.
Пример 2. f(x) = sin x, xÎ[0,2p], f”(x) = - sin x, следовательно, функция sin x вогнута на отрезке [0, ?] и выпукла на отрезке [?, 2 ?].
Прежде чем сформулировать задачу поиска, отметим, что оптимизационная задача
f(x)
> min, х Î
Р (f(x) > max, х Î Р), (11.11)
где в случае max целевая функция f (х) выпукла, в случае min – вогнута и Р –
полиэдр, называется задачей выпуклого программирования. Ясно, что задача линейного программирования является ее частным случаем.
Задача поиска. Объект, подлежащий обнаружению, находится в одном из п районов с вероятностями р1,..., рп соответственно. Для поиска объекта имеется общий ресурс времени Т (т. е. при t>T поиск считается нецелесообразным). Известно, что при поиске в i-м районе в течение времени ti, вероятность обнаружения объекта (при условии, что он там находится) выражается через функцию Бернулли 1-
(11.12)
(11.13)
(11.14)
Из теории вероятностей хорошо известно, что
(11.15)
Кроме того, очевидно, что задача g(x)>max эквивалентна задаче (-g(x))>
min; также очевидно, что условия (11.13) и (11.14) определяют определенный полиэдр Р (рис. 11.6). Следовательно, вводя целевую функцию получаем следующую оптимизационную задачу:
, (11.16)
где Р– полиэдр, заданный неравенствами (11.13) и (11.14).
Так как причем , то функция f(t) выпуклая и мы имеем задачу выпуклого программирования. Общие методы решения таких задач довольно сложны, однако в нашем конкретном случае можно предложить наглядное геометрическое решение.
Действительно, имеем <0. Значит, функция f(t) убывает по любому переменному ti, i = 1, 2,...,n,
и ее наименьшее значение достигается на гиперплоскости t1
+ t2 +…+ tn
= T (в случае двух переменных это прямая АВ на рис. 11.6). Однако в отличие от задач линейного программирования это наименьшее значение достигается необязательно в вершинах А, В и т.д., в чем можно убедиться, исследуя на АВ функцию f(t) в случае двух переменных. Тогда f(t1,t2)= Минимум этой функции может достигаться и внутри отрезка [0, T] в зависимости от соотношения параметров р1, р2,
?1, ?2, в чем можно убедиться непосредственным исследованием функции одного переменного (например, если то минимум достигается в середине Е отрезка АВ).
Задача управления водохранилищем
Водные системы используются для орошения, производства электроэнергии, водоснабжения, коммерческого рыболовства, как место для отдыха и т.д. С таким разнообразным характером эксплуатации ресурсов почти всегда связано столкновение различных интересов, что в свою очередь порождает множество различных проблем. Как сравнить, например, между собой различные стратегии управления? Или: как одна и та же стратегия благоприятствует одной группе пользователей и наносит удары другим?
Начнем с более простой задачи – управления водохранилищем, т. е. с накопления определенного запаса пресной воды и такого управления этим запасом, чтобы наилучшим образом удовлетворялись потребности в пресной воде. Выберем также некоторый период времени, для которого будем решать задачу управления, пусть это будет 5-летний период.
Итак, нас интересует величина Xt – запас воды в водохранилище в момент времени t
и ее изменение с течением времени. Выделим факторы (прежде всего природные), которые оказывают влияние на величину Xt:
§ приток по реке, на которой построено водохранилище, который обозначим через Rt;
§ пополнение запаса воды за счет боковой приточности – Bt;
§ выпадение осадков на поверхность водохранилища – Оt;
§ испарение воды с поверхности водохранилища – It;
§ фильтрация воды в нижнем створе водохранилища – F1.
Помимо этого есть и факторы антропогенного происхождения, из которых для простоты выделим два:
§ вода расходуется на нужды сельского хозяйства – St и коммунальное водоснабжение – Кt;
§ часть воды пропускается через плотину дальше по реке – Рt.
Естественно предполагать, что запас воды в водохранилище не должен становиться меньше некоторой минимальной величины Хmin, но и не должен превышать объем водохранилища Xmax ? V
Схематически динамику запаса воды в водохранилище можно представить так, как показано на рис. 12.3.
Следующий вопрос, который необходимо решить, касается величин этих факторов, их изменений во времени. Пусть известны ряды наблюдений среднедоходных величин стока (выше водохранилища), осадков в районе водохранилища и боковой приточности за предыдущие 20 лет. Естественно предполагать, что изменение этих величин Rt, Оt и Вt в ближайшие 5 лет будет происходить примерно так же, как и в предыдущие 20 лет, т. е. их можно положить равными средним значениям за 20 лет:
(12.1)
(12.2)
(12.3)
где T = 1, 2, 3, 4, 5 .
Другими словами, можно считать величины Rt, Оt и Вt детерминированными, однако для их определения можно было бы применить и статистические методы, описанные в гл. 10.
Перейдем к процессам расходования воды, один из них – испарение. С достаточной точностью можно считать, что It ? Dt, где Dt –
дефицит влажности, который может быть рассчитан так же, как выражения (12.1)–(12.3) по данным наблюдений. Тогда
It = ?Dt, (12.4)
где ?
– эмпирический коэффициент пропорциональности.
Далее, объем воды Ft, которая профильтровывается в нижнем створе водохранилища, пропорциональна объему воды в водохранилище, т. е.
Ft = kXt, (12.5)
где k – эмпирический коэффициент пропорциональности, соответствующий определенному типу грунта.
Расход воды через плотину Рt – величина регулируемая. Регулируемыми величинами являются величины потребления St и Кt, которые суммарно обозначим через Qt, т. е.
Qt = St + Kt (12.6)
Итак, после рассмотрения всех процессов формирования воды в водохранилище можно записать закон сохранения массы воды:
X t+?t = x t + Y t – Zt, (12.7)
где
Yt = Rt + Ot + Вt, (12.8)
Zt = It + Ft + Pt + Qt. (12.9)
Эти уравнения часто называют уравнениями баланса. Задавая условия накопления и расходования воды и решая уравнения водного баланса, можно получить ответ на поставленный вопрос: чему равен запас воды в водохранилище в каждый момент времени t.
Блок- схема соответствующего расчета на ЭВМ приведена на рис. 12.4.
Прокомментируем значения отдельных фрагментов программных блоков.
Блок «Внешние факторы» с шагом в один месяц прогнозирует значения внешних факторов по заданным временным рядам.
Следующий блок, используя прогнозные значения внешних факторов, осуществляет вычисление воды, испарившейся и профильтровавшейся из водохранилища. Блок «Водный баланс I» вычисляет запас воды, который был бы в водохранилище в отсутствие промышленно-потребительских факторов использования воды.
Блок «Допустимые стратегии» оценивает количество воды, потребляемой в течение месяца сельским хозяйством и коммунальным водоснабжением. В блоке «Водный баланс II» проводится соответствующая корреляция количества воды в водохранилище с учетом антропогенного фактора. Варьируя количества воды, потребляемой водопользователями, можно путем численных экспериментов составить прогноз водопользования и на его основе осуществлять выбор стратегии на практике.
Загрязнение окружающей среды токсикантами и количественные критерии оценки его фактического уровня
Активизация хозяйственно-производственной деятельности человека в современных условиях природопользования и глобальные масштабы ее антропогенного воздействия на главные составляющие биосферы создают ситуацию острого экологического кризиса, обусловленную деградацией объектов окружающей среды. В связи с этим для оптимизации условий взаимодействия человека с природой важной представляется роль всестороннего анализа окружающей природной среды [16], главными задачами которого является комплексная оценка экологического резерва биосферы и ее потенциальных возможностей к самовосстановлению и самоочищению, анализ широкого спектра различных типов воздействий (как приоритетных, так и не приоритетных) на природные экосистемы и изучение специфических особенностей этих воздействий [15].
В последние годы особую значимость и актуальность приобретают токсикологические аспекты всестороннего анализа окружающей среды [43, 9, 53]. Серьезной проблемой является установление пороговости эффекта токсикологического воздействия в системах «токсикант – окружающая среда» и «токсикант – живой организм» и определение зависимости «доза – ответная реакция», которая послужила активным импульсом для развития нового направления в экологии, базирующегося на фундаментальных основах токсикологической, бионеорганической и экологической химии, называемого экотоксикологией.
Научная значимость экотоксикологии состоит в изучении современных представлений токсичности и канцерогенности элементов и их соединений, исследовании специфических биогеохимических особенностей поведения токсикантов в окружающей среде, механизма их распространения и метаболизма; установлении взаимосвязи между необходимостью и токсичностью элементов; определении локализации канцерогенных ионов; оценке порогового эффекта токсикологического воздействия.
Подобный целостный комплекс достаточно сложных научно-прикладных задач, решение которых предусматривается в рамках экотоксикологии, в большинстве случаев позволяет произвести количественную оценку порогового эффекта токсикологического воздействия, имеющего место в системах «токсикант – окружающая среда» и «токсикант – живой организм» согласно уравнению [34]:
Dr
= Do - (De + Dm )
где Dr – доза вредного вещества, достигшая рецептора;
Do
– доза вредного вещества, введенная в организм;
De
и Dm
– дозы вредного вещества, соответственно выделенные из организма и обезвреженные в процессе продвижения яда к рецептору.
Концепция пороговости предполагает высокое качество среды и полную безопасность для человека и любых популяций при условии загрязнения этой среды ниже определенного уровня, воздействие которого на любые организмы меньше некоторого порогового значения.
Загрязнение окружающей среды –
это процесс привнесения в среду или возникновение в ней новых, обычно не характерных для нее физических, химических, биологических агентов, оказывающих негативное воздействие. Существуют три этапа загрязнений: физическое (солнечная радиация, электромагнитное излучение и т.д.), химическое (аэрозоли, тяжелые металлы и т.д.), биологическое (бактериологическое, микробиологическое). Каждый тип загрязнения имеет характерный и специфичный для него источник загрязнения – природный или хозяйственный объект, являющийся началом поступления вещества-загрязнителя в окружающую среду. Различают природные и антропогенные источники загрязнения.
Основные природные источники поступления токсикантов в окружающую среду – ветровая пыль, лесные пожары, вулканический материал, растительность, морские соли.
Антропогенные источники – это первичное и вторичное производство цветных металлов, стали, чугуна, железа; добыча полезных ископаемых; автомобильный транспорт; химическая промышленность; производство меди, фосфатных удобрений; процессы сжигания угля, нефти, газа, древесины, отходов и др. Антропогенный поток поступления токсикантов в окружающую среду превалирует над естественным (50–80%) и лишь в некоторых случаях сопоставим с ним.
В качестве критериев количественной оценки уровня загрязнения окружающей среды могут быть использованы индекс загрязнения, предельно допустимая, фоновая и токсическая концентрации.
Индекс загрязнения
(ИЗ) – показатель, качественно и количественно отражающий присутствие в окружающей среде вещества-загрязнителя и степень его воздействия на живые организмы.
Предельно допустимая концентрация
(ПДК) – количество вредного вещества в окружающей среде, которое при постоянном контакте или при воздействии за определенный промежуток времени практически не влияет на здоровье человека. Предельно допустимые концентрации веществ, загрязняющих биосферу, вводились как нормирующие показатели во многих странах, в том числе и в нашей стране. Они устанавливались в приземной атмосфере, водах, почвах, растениях, продуктах питания (табл. 3.1–3.4).
Существующая система ПДК недостаточно достоверно информативна, поскольку предусматривает определение индивидуального токсиканта, дистанцируясь от вопроса о комплексном воздействии различных загрязнителей. Между тем совместное действие, например, органокомплексов тяжелых металлов кардинально меняет ПДК, экспериментально полученные для отдельного тяжелого металла.
Фоновая концентрация –
содержание вещества в объекте окружающей среды, определяемое суммой глобальных и региональных естественных и антропогенных вкладов в результате дальнего или трансграничного переноса.
Под токсической концентрацией
понимают либо концентрацию вредного вещества, которое способно при различной длительности воздействия вызывать гибель живых организмов, либо концентрацию вредного начала, вызывающую гибель живых организмов в течение 30 суток в результате воздействия на них вредных веществ [11].
Говоря о токсической концентрации как о своеобразном индикаторе токсичности природно-антропогенных экосистем, нельзя не коснуться и таких важных понятий в экотоксикологии, как вредное вещество или токсикант – загрязнитель, метаболизм, канцерогенез, токсичность как результат избытка необходимых веществ и соединений, биогеохимические свойства токсикантов и их химически активные миграционные формы в окружающей природной среде.
Защита атмосферы
Характеристика атмосферы и виды загрязнений. Огромное число вредных веществ находится в воздухе, которым мы дышим.
Это и твердые частицы, например частицы сажи, асбеста, свинца, и взвешенные жидкие капельки углеводородов и серной кислоты, и газы, такие, как оксид углерода, оксиды азота, диоксид серы. Все эти загрязнения, находящиеся в воздухе, оказывают биологическое воздействие на организм человека: затрудняется дыхание, осложняется и может принять опасный характер течение сердечно-сосудистых заболеваний. Под действием одних содержащихся в воздухе загрязнителей (например, диоксида серы и углерода) подвергаются коррозии различные строительные материалы, в том числе известняк и металлы. Кроме того, может измениться облик местности, поскольку растения также чувствительны к загрязнению воздуха.
Смог (от англ. smoke – дым и fog – туман), нарушающий нормальное состояние воздуха многих городов, возникает в результате реакции между содержащимися в воздухе углеводородами и оксидами азота, находящимися в выхлопных газах автомобилей.
Таблица 4.1 и рис. 4.3 позволят вспомнить нормальный состав и строение атмосферы Земли.
Земная атмосфера подразделяется на слои в соответствии с их температурой. На рис. 4.3 высота слоев указана приблизительно, поскольку она меняется в зависимости от точки отсчета.
К основным загрязнителям атмосферы, которых, по данным ЮНЕП*, ежегодно выделяется до 25 млрд т, относят:
· диоксид серы и частицы пыли – 200 млн т/год;
· оксиды азота (NxOy) – 60 млн т/год;
· оксиды углерода (СО и СО2) – 8000 млн т/год;
· углеводороды (СxНу) – 80 млн т/год.
* ЮНЕП – Программа ООН по окружающей среде.
Оксид серы IV SO2. При растворении в воде образует кислотные дожди: Н2О + SO2 = H2SO3. Выделяется в атмосферу в основном в результате работы теплоэлектростанций (ТЭС) при сжигании бурого угля и мазута, а так же серосодержащих руд - PbS, ZnS, Cus, NiS, MnS и т.д.
При сжигании угля или нефти содержащаяся в них сера окисляется, при этом образуются два соединения - диоксид серы и триоксид серы. В процессе первоначального горения топлива до триоксида серы окисляется менее 3% серы. Кислотные дожди губят растения, закисляют почву, увеличивают кислотность озер. В Норвегии, например, в 80-е годы из-за кислотных дождей погибло много рыбы, в этом была и большая доля вины российских предприятий (в основном, комбината «Североникель», расположенного на Кольском полуострове). Большую озабоченность вызывает в России огромный трансграничный перенос серы с Запада, составляющий примерно 2 млн. т. оксидов серы – 10 млн. т. сульфатов в год, так как воздушные массы с Запада в нашу страну в связи с розой ветров в 7 – 10 раз превышают наши воздушные массы в Европу. Это в основном страны Восточной Европы и Украина, энергетика которых базируется на бурых углях.
Россия входит в конвенцию по SO2
и участвует во всех процессах, способствующих снижению выбросов окислов серы в атмосферу. В основном это строительство заводов по производству серной кислоты по схеме: диоксид серы – триоксид серы – серная кислота. Используя оксиды серы как вторичное сырье, человечество для производства такого необходимого ему во многих отраслях промышленности продукта, как серная кислота, перестанет извлекать из недр ограниченные запасы серы.
Подсчитано, что в 80-е годы человечеству было необходимо получать около 25 млн. т. серной кислоты в год (например, для получения синтетических моющих средств и других продуктов), а выброс оксидов серы в то же время составил 15,6 млн. т. в год, больше чем необходимо для производства указанного выше количества серной кислоты.
Даже при среднем содержании оксидов серы в воздухе порядка 100 мкг. на кубометр, что нередко имеет место в городах, растения приобретают желтоватый оттенок. Отмечено, что заболевания дыхательных путей, например, бронхиты, учащаются при повышении уровня оксидов серы в воздухе.
Разработано большое число методов для улавливания двуокиси серы из отходящих дымовых газов.
Весьма привлекательными оказались скрубберные установки, дающие отходы в виде продуктов, имеющих спрос на рынке: один из таких скрубберов производит серу высокой чистоты, другой – разбавленную серную кислоту. Последнюю невыгодно перевозить на большие расстояния, но высокочистая сера, которая находит применение при производстве лекарственных препаратов, промышленных реагентов, удобрений в развитых странах привлекает и потребителей из-за рубежа.
В России пока удалось решить эту проблему на большей части европейской территории. В азиатской части, где трудно решить вопросы с транспортировкой серной кислоты, например, огромные массы SO2
комбината «Норильский никель», которые выбрасывают высокие (до 100 м) трубы, достигают Канады через Северный полюс. Эта проблема в разных регионах России требует срочного решения. В Москве, например, на единственном нефтеперерабатывающем заводе в Капотне с 1997 г. запрещено использовать серосодержащие нефтепродукты.
Оксиды азота (NxOy). В природе оксиды азота образуются при лесных пожарах. Высокие концентрации оксидов азота в городах и окрестностях промышленных предприятий связаны с деятельностью человека. В значительном количестве оксиды азота выделяют ТЭС и двигатели внутреннего сгорания. Выделяются оксиды азота и при травлении металлов азотной кислотой. Производство взрывчатых веществ и азотной кислоты – еще два источника выбросов оксидов азота в атмосферу.
Загрязняют атмосферу:
· N2O – оксид азота I (веселящий газ), обладает наркотическими свойствами, используется при хирургических операциях;
· NO – оксид азота II, действует на нервную систему человека, вызывает паралич и судороги, связывает гемоглобин крови и вызывает кислородное голодание;
· NO2, N2O4 – оксиды азота V (N2О4= 2NО2), при взаимодействии с водой образуют азотную кислоту 4NO2 + 2Н2О + О2
= 4HNО3. Вызывают поражение дыхательных путей и отек легких.
Оксиды азота принимают участие в образовании фотохимического смога.
К фотохимическим процессам относятся процессы образования пероксиацетилнитратов (ПАН). При концентрациях ПАН 0,1–0,5 мг/м3 они могут вызывать раздражение слизистой оболочки глаз и гибель растений, что характерно для южных солнечных городов.
Уровни фотохимического загрязнения воздуха тесно связаны с режимом движения автотранспорта. В период высокой интенсивности движения утром и вечером отмечается пик выбросов в атмосферу оксидов азота и углеводородов. Именно эти соединения, вступая в реакции друг с другом, обусловливают фотохимическое загрязнение воздуха.
Наблюдается большое количество заболеваний верхних дыхательных путей у населения, подвергавшегося воздействию высоких уровней оксидов азота, по сравнению с группой людей, которые находились в условиях меньшей концентрации NхOy, a концентрации других загрязнителей были такими же.
Люди с хроническими заболеваниями дыхательных путей (эмфизема легких, астма), а также страдающие сердечно-сосудистыми заболеваниями, более чувствительны к прямым воздействиям оксидов азота.
Оксид углерода II (СО). Концентрация оксида углерода II в городском воздухе больше, чем любого другого загрязнителя. Однако поскольку этот газ не имеет ни цвета, ни запаха, ни вкуса, наши органы чувств не в состоянии обнаружить его.
Самый крупный источник оксида углерода в городах – автотранспорт. В большинстве городов свыше 90% СО попадает в воздух вследствие неполного сгорания углерода в моторном топливе по реакции: 2С+О3 = 2СО. Полное сгорание дает в качестве конечного продукта диоксид углерода: С + О2
= СО2.
Другой источник оксида углерода – табачный дым, с которым сталкиваются не только курильщики, но и их ближайшее окружение. Доказано, что курильщик поглощает вдвое больше оксида углерода по сравнению с некурящим.
Оксид углерода вдыхается вместе с воздухом или табачным дымом и поступает в кровь, где конкурирует с кислородом за молекулы гемоглобина. Оксид углерода соединяется с молекулами гемоглобина прочнее, чем кислород. Чем больше оксида углерода содержится в воздухе, тем больше гемоглобина связывается с ним и тем меньше кислорода достигает клеток.
По этой причине оксид углерода при повышенных концентрациях представляет собой смертельно опасный яд.
Типичный автомобильный двигатель середины 60-х годов выбрасывал с выхлопными газами в среднем 73 г оксида углерода на каждые 1,5 км пробега. К 1981 г. выброс оксида углерода новыми автомобилями достиг уровня всего 3,4 г на 1,5 км (данные США).
Для достижения установленного стандарта выхлопные газы смешиваются с воздухом в присутствии катализатора. Дальнейшее окисление оставшегося оксида углерода происходит в каталитическом преобразователе (Pt/Pd – платина-палладий). Именно такая система в настоящее время повсеместно выбрана для уменьшения выбросов СО в атмосферу. В Москве, например, по решению мэрии не оформляют покупку автомобилей иностранных марок до 1985 г. выпуска, т. е. без установленных каталитических дожигателей на выхлопные газы. В США годовые выбросы оксида углерода постепенно уменьшались начиная с 1976 г., по мере того как новые модели автомобилей с каталитическими преобразователями выхлопных газов сменяли старые, менее эффективные модели; общий выброс СО автотранспортом США сократился с 64,3 млн т в 1976 г. до 47,7 млн т в 1983 г., т.е. на 25%. Одна из причин столь небольшого снижения связана с общей длиной пробега автомобилей, которая ежегодно возрастает из-за постоянного роста числа автомобилей на дорогах и улицах. Эффективность каталитических преобразователей со временем уменьшается и необходимо регулярно осуществлять повторные проверки выхлопных газов автомобилей на содержание СО. Борьба за качество воздуха во всех странах продолжается, поскольку пробег автомобилей непрерывно растет. Этот неограниченный рост можно было бы сократить за счет создания новых систем общественного транспорта, привлекательных для населения и способных широко развиваться, или перехода на электромобили.
Оксид углерода IV (СО2). Влияние углекислого газа (СО2) связано с его способностью поглощать инфракрасное излучение (ИК) в диапазоне длин волн от 700 до 1400 нм. Земля, как известно, получает практически всю свою энергию от Солнца в лучах видимого участка спектра (от 400 до 700 нм), а отражает в виде длинноволнового ИК-излучения.
С 1850 г. содержание СО2 в атмосфере возросло с 0,027 до 0,033% в связи с техногенной деятельностью. Человечество сожгло в XX в. ископаемых видов топлива столько, сколько за весь период своего существования до XX в. Поглощая ИК-излучение, СО2 действует как парниковая пленка.
Подсчитано, что если к 2000 г. среднегодовая температура возрастет на 1°С, то в результате таяния ледников уровень Мирового океана поднимется на 1,5 м. К счастью, накопление углекислого газа в атмосфере идет в 2–3 раза медленнее, чем это подсчитано теоретически.
Механизмом вывода углекислого газа из атмосферы является поглощение его в результате фотосинтеза растений, а также связывание его в океанских водах по реакции: СО2+Н2О+Са2+ = =СаСО3+2Н+.
Пыль. Причины основных выбросов пыли в атмосферу – это пыльные бури, эрозия почв, вулканы, морские брызги. Около 15– 20% общего количества пыли и аэрозолей в атмосфере – дело рук человека: производство стройматериалов, дробление пород в горнодобывающей промышленности, производство цемента, строительство. Например, во Франции приблизительно 3% общего объема производимого цемента выбрасывается в атмосферу (около 100 т в год). Пыль, осевшая в индустриальных городах, содержит 20% оксидов железа (Fе2О3), 15% оксида кремния (SiO2) и 5% сажи (С). Промышленная пыль часто включает также оксиды различных металлов и неметаллов, многие из которых токсичны (оксиды марганца, свинца, молибдена, ванадия, сурьмы, теллура).
Американский эколог О. Бартон так охарактеризовал проблему, связанную с запыленностью атмосферы: «Одно из двух: либо люди сделают так, что в воздухе станет меньше дыма, либо дым сделает так, что на Земле станет меньше людей».
Пыль и аэрозоли не только затрудняют дыхание, но и приводят к климатическим изменениям, поскольку отражают солнечное излучение и затрудняют отвод тепла от Земли. Например, так называемые смоги в очень населенных южных городах (Мехико – 22 млн жителей и др.) снижают прозрачность атмосферы в 2–5 раз.
Кислород (О2). Кислород на Земле создан самой жизнью.
Рис. 4. 4 иллюстрирует историю происхождения кислорода на планете Земля. Примерно 2 млрд лет назад содержание свободного кислорода в земной атмосфере начало возрастать. После того как из части атмосферного кислорода сформировался защитный озоновый слой, начали развиваться наземные растения и животные. С течением времени содержание кислорода в атмосфере значительно менялось, поскольку менялись уровни его образования и использования [30].
Главным продуцентом кислорода на Земле служат зеленые водоросли поверхности океана (60%) и тропические леса суши (30%). Тропические леса Амазонки называют легкими планеты Земля. Ранее в литературе высказывались опасения, что возможно уменьшение количества кислорода на Земле вследствие увеличения объема сжигаемого ископаемого топлива. Но расчеты показывают, что использование всех доступных человеку залежей угля, нефти и природного газа уменьшит содержание кислорода в воздухе не более чем на 0,15% (с 20,95 до 20,80%). Другая проблема – вырубка лесов, приводящая к возникновению кислородных «паразитов» – стран, которые живут за счет чужого кислорода. Например, США за счет своих растений имеет только 45% кислорода, Швейцария – 25%.
Озон (О3). Озон образуется в верхних слоях стратосферы и в нижних слоях мезосферы в результате протекания следующих реакций:
О2 + hv (=240 нм) = О + О,
O2 + О + М,
где М – различные составляющие атмосферы, например, кислород или азот.
Озон и атомарный кислород могут реагировать в кислородной атмосфере согласно реакциям:
O3 + hv (380 нм) = О2 + О,
О3 + О = 2O2,
О + О + М = O2+М.
Эти реакции образуют так называемый цикл Чепмена. Общее содержание озона иногда выражают как число молекул, получаемое в результате суммирования по всем широтам, долготам и высотам. На сегодняшний день это количество приблизительно равно 4·1037 молекул озона. Наиболее распространенной количественной оценкой состояния озона в атмосфере является толщина озонного слоя Х – это толщина слоя озона, приведенного к нормальным условиям, которая в зависимости от сезона, широты и долготы колеблется от 2,5 до 5 относительных мм.
Области с уменьшенным содержанием на 40–50% озона в атмосфере называют «озоновыми дырами».
Около 90% озона находится в стратосфере. Долгое время считалось, что основной причиной истощения озонного слоя являются полеты космических кораблей и сверхзвуковых самолетов, а также извержения вулканов и другие природные явления.
Разрушительное действие хлорфторуглеродных соединений (ХФУ) на стратосферный озон было открыто в 1974 г. американскими учеными – специалистами в области химии атмосферы Ш. Роулендом и М. Молина (в 1996 г. за открытия в этой области им присуждена Нобелевская премия). С тех пор не раз предпринимались попытки ограничить выброс ХФУ в атмосферу, и тем не менее сейчас во всем мире ежегодно производится около миллиона тонн газообразных веществ, способных разрушить озонный слой.
ХФУ, часто встречающиеся в быту и в промышленном производстве, – это пропелленты в аэрозольных упаковках, хладоагенты (фреоны) в холодильниках и кондиционерах. Они применяются и при производстве вспененного полиуретана, и при чистке электронной техники.
Постепенно ХФУ поднимаются в верхний слой атмосферы и разрушают озонный слой – щит атмосферы, спасающий от УФ-излучения. Время жизни двух самых опасных фреонов – Ф-11 и Ф-12 – от 70 до 100 лет. Этого вполне достаточно, чтобы в ближайшее время ощутить на себе последствия сегодняшней экологической неграмотности. Если, сохранятся современные темпы выброса ХФУ в атмосферу, то в ближайшие 70 лет количество стратосферного озона уменьшится на 90%. При этом весьма вероятно, что:
· рак кожи примет эпидемический характер;
· резко сократится количество планктона в океане;
· исчезнут многие виды животных, например, ракообразные;
· УФ-излучение неблагоприятно скажется на сельскохозяйственных культурах.
Все это нарушает равновесие во многих экосистемах Земли, из-за фотохимического смога ухудшится общее состояние атмосферы, усилится «парниковый эффект».
ХФУ – высокостабильные соединения и поскольку они не поглощают солнечное излучение с большой длиной волны, они не могут подвергнуться его воздействию в нижних слоях атмосферы, но, преодолев защитный слой, поднимаются вверх по атмосфере и коротковолновое излучение высвобождает из них атомы свободного хлора. Свободные атомы хлора затем вступают в реакцию с озоном:
Сl + О3 = СlO + O2,
СlO + О = Сl + O2.
Таким образом, разложение ХФУ солнечным излучением создает каталитическую цепную реакцию, согласно которой один атом хлора способен разрушить до 100 000 молекул озона. Канцерогенным является УФ-излучение с длиной волны короче 320 нм. Ожидается, что каждый процент сокращения озонного слоя повлечет за собой увеличение числа случаев заболевания раком кожи на 5–6%.
Основные санитарные требования к качеству атмосферного воздуха. Основным критерием контроля качества атмосферного воздуха является ПДК токсичных веществ. При санитарной оценке качества атмосферного воздуха принято выражать содержание загрязняющих веществ в мг на м3 воздуха. Это выражение концентрации применимо для любого агрегатного состояния примесей. За рубежом, например в США, часто пользуются другой концентрацией:
где М –
молекулярная масса загрязнителя;
22,4 – объем в литрах 1 моля газа при 25°С и 760 мм рт. ст.
Критерием оценки влияния выбросов предприятий на окружающую среду является уровень практических концентраций примесей в атмосфере, полученных в результате рассеивания выбросов, по сравнению с предельно допустимыми.
Для атмосферного воздуха установлены соответствующие значения ПДК.
Концентрация вредных веществ в воздухе производственных помещений не должна превышать ПДКр.з., в воздухе для вентиляции производственных помещений – 0,3 ПДКр.з.; в атмосферном воздухе населенных пунктов – ПДК м.р.; в зоне отдыха и курортов - 0,8 ПДК м.р..
Нормы ПДК служат исходной базой для проектирования и экспертизы новых машин и механизмов, технологических линий, промышленных сооружений и предприятий, а также для расчета вентиляционных, газопылеулавливающих и кондиционирующих систем, контролирующих приборов и систем сигнализации.
Основные организации, контролирующие выбросы предприятий в атмосферный воздух, – санитарно-эпидемиологические станции (СЭС); территориальные управления Федеральной службы России по гидрометеорологии и мониторингу окружающей среды; Государственная инспекция по контролю за работой газоочистных и пылеулавливающих установок.
Для предотвращения загрязнения атмосферы введены нормативы на выбросы вредных веществ непосредственно из каждого источника (труба, шахта и т.д.). Государственным стандартом (1990 г.) установлены величины предельно допустимых выбросов (ПДВ) вредных веществ в атмосферу:
ПДВ – количество вредных веществ, выбрасываемых в единицу времени (г/с), которое в сумме с выбросами из других источников загрязнения не создает приземной концентрации примеси, превышающей значение ПДК. Это научно-технический норматив для конкретного источника загрязнения, обязательный для данного предприятия.
Если в воздухе населенных мест концентрация превышает ПДК, а величина ПДВ по объективным причинам не может быть достигнута, то фактический выброс называется временно согласованным выбросом
(ВСВ).
Нормативные выбросы вредных веществ устанавливают для каждого источника загрязнения в г/с и для всего предприятия в целом (т/год). При установлении ПДВ или ВСВ необходимо учитывать фоновые концентрации, значения которых определяются для предприятия территориальными организациями Федеральной службы России по гидрометеорологии и мониторингу окружающей среды. Для городов с населением меньше 250 тыс. человек приняты следующие нормы фоновых концентраций основных токсикантов:
SО
2 – 0,1 мг/м3 СО – 1,5 мг/м
NО2 – 0,03 мг/м3 пыль – 0,2 мг/м3
Методика для расчета ПДВ основана на применении модели, которая учитывает индивидуальные свойства загрязнителя (ПДКм.р.); фоновую концентрацию Сф; геометрические размеры источника загрязнения (h – высота, м; D – диаметр устья, м); условия выхода газового потока из источника (Т –
разность температур выбрасываемой смеси и окружающего воздуха, V – средняя скорость выхода смеси из устья источника, м/с); W, f – условия вертикального и горизонтального рассеивания вредного вещества в атмосферном воздухе; А, – показатель относительной агрессивности; F – коэффициент, учитывающий скорость оседания вредных веществ в воздухе; п – коэффициент, учитывающий рельеф местности.
Физико- химические методы очистки атмосферы от газообразных загрязнителей. Основное направление защиты воздушного бассейна от загрязнений вредными веществами – создание новой безотходной технологии с замкнутыми циклами производства и комплексным использованием сырья.
Многие действующие предприятия используют технологические процессы с открытыми циклами производства. В этом случае отходящие газы перед выбросом в атмосферу подвергаются очистке с помощью скрубберов, фильтров и т.д. Это дорогая технология, и только в редких случаях стоимость извлекаемых из отходящих газов веществ может покрыть расходы на строительство и эксплуатацию очистных сооружений.
Наиболее распространены при очистке газов адсорбционные, абсорбционные и каталитические методы.
Санитарная очистка промышленных газов включает в себя очистку от СО2, СО, оксидов азота, 8O2, от взвешенных частиц.
· Очистка газов от
СО2.
а) Абсорбция водой. Простой и дешевый способ, однако эффективность очистки мала, так как максимальная поглотительная способность воды – 8 кг СО2 на 100 кг воды.
б) Поглощение растворами этанол-аминов по реакции:
2R – NH2 + СО2 + Н2О > (R – NH3)2СО3.
В качестве поглотителя обычно применяется моноэтаноламин.
в) Холодный метанол СН3ОН является хорошим поглотителем СО2
при -35°С.
г) Очистка цеолитами типа СаА. Молекулы СО2 очень малы (d = 3,1 ). Для извлечения СO2 из природного газа и удаления продуктов жизнедеятельности (влаги и СО2) в современных экологически изолированных системах (космические корабли, подводные лодки и т.д.) используются молекулярные сита типа СаО.
· Очистка газов от СО.
а) Дожигание на Pt/Pd (платино-палладиевом) катализаторе:
2СО + О2 > 2СО2.
б) Конверсия (адсорбционный метод):
СО + Н2О > СО2 + H2.
· Очистка газов от оксидов азота.
В химической промышленности очистка от оксидов азота на 80% и более осуществляется в основном в результате превращений на катализаторах.
а) Окислительные методы основаны на реакции окисления оксидов азота с последующим поглощением водой и образованием НNО3:
окисление озоном в жидкой фазе по реакции:
2NO + О3 + Н2О > 2 НNО3;
окисление кислородом при высокой температуре:
2NO + О2 > 2NО2.
б) Восстановительные каталитические методы основаны на восстановлении оксидов азота до нейтральных продуктов в присутствии катализаторов или под действием высоких температур в присутствии восстановителей. Процесс восстановления можно представить в виде следующей схемы:
N2О5 > N2О4 > NО2 > NO N2
+О2.
-11°C 21,5°C 140°C 600°C 10 000°С
Разложение оксидов азота до нейтральных соединений (2NO >
N2 + О2) происходит в потоке низкотемпературной плазмы (10 000°С). Этот процесс при более низких температурах в присутствии катализатора протекает в двигателях внутреннего сгорания. Присутствие восстановителей в зоне реакции (угля, графита, кокса) также понижает температуру реакции восстановления. При температуре 1000°С степень разложения N0 в реакции С + 2NO > СО2
+ N2 составляет 100%.
При температуре выхлопных газов автомобиля в двигателе внутреннего сгорания возможна реакция:
2NO + 2СО > N2 + 2СО2.
в) Сорбционные методы.
Это адсорбция оксидов азота водными растворами щелочей и известью СаСО3
и адсорбция оксидов азота твердыми сорбентами (угли, торф, силикагели, цеолиты).
· Очистка газов от
SO2.
ТЭС мощностью 1 млн кВт при работе на каменном угле выбрасывает в атмосферу 11 тыс. т SO2, на газе – 20% этого количества.
Очистка дымовых газов электростанций обходится сейчас приблизительно в 300–400 тыс. руб. за 1 кВт в год. Снижение доли серы в нефтепродуктах на 0,5% обходится при этом в 30 тыс. руб. на 1 т. Методы улавливания SO2 требуют больших затрат, их можно разделить на аммиачные, нейтрализации и каталитические.
Эффективность очистки зависит от множества факторов: парциальных давлений SO2 и O2 в очищаемой газовой смеси; температуры отходящих газов; наличия и свойств твердых и газообразных компонентов; объема очищаемых газов; наличия и доступности хемосорбентов; потребности в продуктах утилизации SO2; требуемой степени очистки газа.
· Очистка газов от взвешенных частиц, например, пыли.
Можно выделить несколько методов улавливания частиц пыли:
гравитационное оседание;
центрифугирование;
электростатическое оседание;
инерционное соударение;
прямой захват;
диффузия.
Все процессы очистки осуществляются с помощью специальных фильтров, скрубберов и т.д.
Защита человека от поражения электрическим током
Безопасность при работе с электроустановками обеспечивается применением различных технических и организационных мер. Они регламентированы действующими правилами устройства электроустановок (ПУЭ). Технические средства защиты от поражения электрическим током делятся на коллективные и индивидуальные, на средства, предупреждающие прикосновение людей к элементам сети, находящимся под напряжением, и средства, которые обеспечивают безопасность, если прикосновение все-таки произошло.
Основные способы и средства электрозащиты:
§ изоляция токопроводящих частей и ее непрерывный контроль;
§ установка оградительных устройств;
§ предупредительная сигнализация и блокировки;
§ использование знаков безопасности и предупреждающих плакатов;
§ использование малых напряжений;
§ электрическое разделение сетей;
§ защитное заземление;
§ выравнивание потенциалов;
§ зануление;
§ защитное отключение;
§ средства индивидуальной электрозащиты.
Изоляция токопроводящих частей – одна из основных мер электробезопасности. Согласно ПУЭ сопротивление изоляции токопроводящих частей электрических установок относительно земли должно быть не менее 0,5–10 М0м1. Различают рабочую, двойную и усиленную рабочую изоляцию.
1 1МОм – 106 Ом.
Рабочей называется изоляция, обеспечивающая нормальную работу электрической установки и защиту персонала от поражения электрическим током. Двойная изоляция, состоящая из рабочей и дополнительной, используется в тех случаях, когда требуется обеспечить повышенную электробезопасность оборудования (например, ручного электроинструмента, бытовых электрических приборов и т.д.). Сопротивление двойной изоляции должно быть не менее 5 МОм, что в 10 раз превышает сопротивление обычной рабочей.
В ряде случаев рабочую изоляцию выполняют настолько надежно, что ее электросопротивление составляет не менее 5 МОм и потому она обеспечивает такую же защиту от поражения током, как и двойная. Такую изоляцию называют усиленной рабочей изоляцией.
Существуют основные и дополнительные изолирующие средства. Основными называют такие электрозащитные средства, изоляция которых надежно выдерживает рабочее напряжение. Дополнительные электрозащитные средства усиливают изоляцию человека от токопроводящих частей и земли. В табл. 20.2 приведены основные сведения об изолирующих электрозащитных средствах.
Неизолированные токопроводящие части электроустановок, работающих под любым напряжением, должны быть надежно ограждены или расположены на недоступной высоте, чтобы исключить случайное прикосновение к ним человека. Конструктивно ограждения изготавливают из сплошных металлических листов или металлических сеток.
Для предупреждения об опасности поражения электрическим током используют различные звуковые, световые и цветовые сигнализаторы, устанавливаемые в зонах видимости и слышимости персонала. Кроме того, в конструкциях электроустановок предусмотрены блокировки – автоматические устройства, с помощью которых преграждается путь в опасную зону или предотвращаются
неправильные, опасные для человека действия. Блокировки могут быть механические (стопоры, защелки, фигурные вырезы), электрические или электромагнитные. Для информации персонала об опасности служат предупредительные плакаты, которые в соответствии с назначением делятся на предостерегающие, запрещающие, разрешающие и напоминающие. Части оборудования, представляющие опасность для людей, окрашивают в сигнальные цвета и на них наносят знак безопасности1. Красным цветом окрашивают кнопки и рычаги аварийного отключения электроустановок.
1 В соответствии с ГОСТом 12.4.026-76 «Цвета сигнальные и знаки безопасности».
Для уменьшения опасности поражения током людей, работающих с переносным электроинструментом и осветительными лампами, используют малое напряжение, не превышающее 42 В.
В ряде случаев, например, при работе в металлическом резервуаре, для питания ручных переносных ламп используют напряжение 12 В.
Для повышения безопасности проводят электрическое разделение сетей на отдельные короткие электрически не связанные между собой участки с помощью разделяющих трансформаторов. Такие разделенные сети обладают малой емкостью и высоким сопротивлением изоляции. Раздельное питание используют при работе с переносными электрическими приборами, на строительных площадках, при ремонтах да электростанциях и др.
При замыканиях тока на конструктивные части электрооборудования (замыкание на корпус) на них появляются напряжения, достаточные для поражения людей или возникновения пожара. Осуществить защиту от поражения электрическим током и возгорания в этом случае можно тремя путями: защитным заземлением, занулением и защитным отключением.
Защитное заземление –
это преднамеренное соединение с землей или ее эквивалентом металлических нетоковедущих частей электрооборудования, которые в обычном состоянии не находятся под напряжением, но могут оказаться под ним при случайном соединении их с токоведущими частями.
Если произошло замыкание и корпус электроустановки оказался под напряжением, то прикоснувшийся к нему человек попадает под напряжение прикосновения (Vпр), которое определяется выражением:
(20.9)
где VЗ –
полное напряжение на корпусе электроустановки. В;
VХ –
потенциал поверхности земли или пола, В.
Таким образом, напряжением прикосновения называется напряжение между двумя точками цепи тока, которых одновременно может коснуться человек.
Рассмотрим схему действия защитного заземления на примере трехфазной сети с изолированной нейтралью (рис. 20.3).
Если человек прикоснется к заземленной электроустановке, находящейся под напряжением, то он попадет под напряжение прикосновения, определяемое по формуле:
(20.10)
где – коэффициент напряжения прикосновения или просто коэффициент прикосновения ( < 1
и зависит от вида заземлителя);
– ток замыкания. А;
R3 – сопротивление защитного заземления, Ом.
Ток, проходящий через тело человека, попавшего под напряжение прикосновения (), составит:
(20.11)
где –
сопротивление растеканию тока в земле, зависящее от удельного сопротивления земли и сопротивления подошвы обуви человека. Ом.
Если человек находится в условиях высокой влажности (Rc > 0), предыдущую формулу можно упростить:
(20.12)
Рассчитаем Для случая, если I3 = 4 A, R3
= 4 Ом и ?пр = 0,4 (контурный заземлитель):
(20.13)
Этот ток безопасен для человека, так как не превышает значения неотпускающего тока (10 мА).
Таким образом, принцип действия защитного заземления заключается в снижении до безопасных значений напряжений прикосновения (и напряжения шага), вызванных замыканием на корпус.
Защитному заземлению (занулению) подвергают металлические части электроустановок и оборудования, доступные для прикосновения человека и не имеющие других видов защиты, например, корпуса электрических машин, трансформаторов, светильников, каркасы распределительных щитов, металлические трубы и оболочки электропроводок, а также металлические корпуса переносных электроприемников.
Обязательно заземляют электроустановки, работающие под напряжением 380 В и выше переменного тока и питающиеся от источника постоянного тока с напряжением 440 В и выше. Кроме того, в помещениях повышенной и особой опасности заземляют установки с напряжением от 42 до 380 В переменного тока и от 110 до 440 В постоянного тока.
Заземляющее устройство
– это совокупность заземлителя – металлических проводников, соприкасающихся с землей, и заземляющих проводников, соединяющих заземляемые части электроустановки с заземлителем. В зависимости от взаимного расположения заземлителей и заземляемого оборудования различают выносные и контурные заземляющие устройства. Первые из них характеризуются тем, что заземлители вынесены за пределы площадки, на которой размещено заземляемое оборудование, или сосредоточены на некоторой части этой площадки (рис. 20.4).
Контурное заземляющее устройство (рис. 20.5), заземлители которого располагаются по контуру (периметру) вокруг заземляемого оборудования на небольшом расстоянии друг от друга (несколько метров), обеспечивает лучшую степень защиты, чем предыдущее.
Заземлители бывают искусственные, которые используются только для целей заземления, и естественные, в качестве которых используют находящиеся в земле трубопроводы (за исключением трубопроводов горючих жидкостей или газов), металлические конструкции, арматуру железобетонных конструкций, свинцовые оболочки кабелей и др. Искусственные заземлители изготавливают из стальных труб, уголков, прутков или полосовой ткани.
Требования к сопротивлению защитного заземления регламентируются ПУЭ. В любое время года это сопротивление не должно превышать:
§ 4 Ом – в установках, работающих под напряжением до 1000 В; если мощность источника тока составляет 100 кВ-А и менее, то сопротивление заземляющего устройства может достигать 10 Ом;
§ 0,5 Ом – в установках, работающих под напряжением выше 1000 В с эффективно заземленной нейтралью.
Наибольшее сопротивление заземляющего устройства (R, Ом) не должно быть более 250/I3 (но не более 10 Ом) в установках напряжением выше 1000 В с изолированной нейтралью. При использовании заземляющего устройства одновременно для установок напряжением до 1000 В, R не должно быть более 125/I3
(но не более 4 или 10 Ом соответственно). В этих формулах I3 - ток замыкания на землю, А.
Защитное зануление
предназначено для защиты в трехфазных четырехпроводных сетях с глухозаземленной нейтралью, работающих под напряжением до 1000 В, так как в этих сетях использование защитного заземления неэффективно. Обычно это сети 220/127, 380/220 и 660/380 В.
Рассмотрим действие защитного зануления подробнее. Пусть имеется трехфазная трехпроводная сеть, работающая под напряжением до 1000 В с заземленной нейтралью (рис. 20.6).
Если в такой схеме одна из фаз будет замкнута на корпус электропроводки (показана на схеме молниеобразной стрелкой), то величина тока (I3, А), протекающего в сети, определится из следующей зависимости:
(20.14)
где –
фазное напряжение, В;
– сопротивление заземления нейтрали, Ом;
– сопротивление корпуса электроустановки, Ом.
При этом на корпусе электроустановки возникает напряжение относительно земли (Vк), определяемое следующей формулой:
(20.15)
Рассчитаем величину тока короткого замыкания (I3. А) для значений VФ = 220 В и R0= R3 =
4 Ом:
и (20.16)
Ток короткого замыкания I3 может оказаться недостаточным для срабатывания защиты, и электроустановка может не отключиться. Корпус электроустановки находится под опасным напряжением. Если человек случайно прикоснется к корпусу электроустановки, находящейся под этим напряжением, то ток, протекающий через тело человека, составит:
(20.17)
где ?пр – коэффициент напряжения прикосновения.
Если ?пр
= 1 и VK
= 110 В, то Iчел
= 110/1000 = 0,11 А = 110 мА. Этот ток превышает значение фибрилляционного, поэтому является смертельно опасным. Таким образом, защитное заземление в этом случае не обеспечивает надежной защиты человека, поэтому используют не заземление, а зануление.
Занулением
называют способ защиты от поражения током автоматическим отключением поврежденного участка сети и одновременно снижением напряжения на корпусах оборудования на время, пока не сработает отключающий аппарат (плавкие предохранители, автоматы и др.). Зануление – это преднамеренное соединение с нулевым защитным проводником металлических нетокопроводяших частей, которые могут оказаться под напряжением (рис. 20.7).
Проводник (1), который соединяет зануляемые части электроустановки с глухозаземленной нейтральной точкой обмотки трансформатора, называют нулевым защитным. Назначение этого проводника заключается в создании для тока короткого замыкания электрической цепи с малым электросопротивлением (цепь обозначена на рисунке цифрами I – II – III – IV – V), чтобы данный ток был достаточен для быстрого отключения повреждения от сети. Это достигается срабатыванием элемента защиты сети от тока короткого замыкания (на рисунке этот элемент обозначен цифрой 2).
Цепь зануления I – II – III – IV – V имеет очень малое электрическое сопротивление (доли Ом). Ток короткого замыкания, возникающий при замыкании на корпус и проходящий по цепи зануления, достигает большого значения (нескольких сотен ампер), что обеспечивает быстрое и надежное срабатывание элементов защиты.
Для устранения опасности обрыва нулевого провода устраивают его повторное многократное рабочее заземление через каждые 250 м.
Основное требование безопасности к занулению: оно должно обеспечивать надежное и быстрое срабатывание защиты. Для этого необходимо выполнение следующего условия:
(20.18)
где Iном
– номинальное значение тока, при котором происходит срабатывание элемента защиты;
k – коэффициент, характеризующий кратность тока короткого замыкания относительно
номинального значения тока, при котором срабатывает элемент защиты.
Время срабатывания элементов защиты зависит от силы тока. Так, для плавких предохранителей и тепловых автоматов при k = 10 время срабатывания предохранителя составляет 0,1 с, а при k = 3–0,2 с. Электромагнитный автоматический выключатель обесточивает сеть за 0,01 с. Согласно требованиям ПУЭ в помещениях с нормальными условиями k
должен находиться в пределах 1,2–3, а во взрывоопасных помещениях – k = 1,4–6.
Еще одна система защиты – защитное отключение – это защита от поражения электрическим током в электроустановках, работающих под напряжением до 1000 В, автоматическим отключением всех фаз аварийного участка сети за время, допустимое по условиям безопасности для человека.
Основная характеристика этой системы – быстродействие, оно не должно превышать 0,2 с. Принцип защиты основан на ограничении времени протекания опасного тока через тело человека. Существуют различные схемы защитного отключения, одна из них, основанная на использовании реле напряжения, представлена на рис. 20.8.
При замыкании фазного провода на заземленный или зануленный корпус электроустановки на нем возникает напряжение корпуса Vк . Если оно превышает заранее установленное предельно допустимое напряжение Vк доп
(т. е. если Vк
> Vк
доп), срабатывает защитное отключающее устройство. Схема работает следующим образом.
Вследствие разности потенциалов между корпусом электроустановки 1 и землей возникает ток Iр, который, проходя через реле 5, замыкает его контакты, подавая питание на отключающую катушку 3. Под влиянием возникшего электромагнитного поля внутрь нее втягивается сердечник 4, вызывая отключение автоматического выключателя 2,
и установка обесточивается.
Защитное отключение рекомендуется применять:
§ в передвижных установках напряжением до 1000 В;
§ для отключения электрооборудования, удаленного от источника питания, как дополнение к занулению;
§ в электрифицированном инструменте как дополнение к защитному заземлению или занулению;
§ в скальных и мерзлых грунтах при невозможности выполнить необходимое заземление.
Рассмотрим кратко организационные мероприятия, обеспечивающие безопасную эксплуатацию электроустановок.
К ним относятся оформление соответствующих работ нарядом или распоряжением, допуск к работе, надзор за проведением работ, строгое соблюдение режима труда и отдыха, переходов на другие работы и окончания работ.
Нарядом для проведения работы в электроустановках называют составленное на специальном бланке задание на ее безопасное производство, определяющее содержание, место, время начала и окончания работы, необходимые меры безопасности, состав бригад и лиц, ответственных за безопасность выполнения работ. Распоряжением называют то же задание на безопасное производство работы, но с указанием содержания работы, места, времени и лиц, которым поручено ее выполнение.
Все работы на токопроводящих частях электроустановок под напряжением и со снятием напряжения выполняют по наряду, кроме кратковременных работ (продолжительностью не более 1 ч), требующих участия не более трех человек. Эти работы выполняют по распоряжению.
К организационным мероприятиям также относятся обучение персонала правильным приемам работы с присвоением работникам, обслуживающим электроустановки, соответствующих квалификационных групп.
Сведения о квалификационных группах персонала представлены в табл. 20.3.
В ряде случаев существенную опасность для человека представляет статическое электричество, под которым понимают совокупность явлений, связанных с возникновением, сохранением и релаксацией (ослаблением) свободного электрического заряда на поверхности и в объеме диэлектрических веществ, материалов, изделий или на изолированных проводниках. Протекание различных технологических процессов, таких, как измельчение, распыление, фильтрование и другие, сопровождается электризацией материалов и оборудования, причем возникающий на них электрический потенциал достигает значений тысяч и десятка тысяч вольт. Воздействие статического электричества на организм человека проявляется в виде слабого длительно протекающего тока либо в форме кратковременного разряда через тело человека, в результате чего может произойти несчастный случай.
Вредное воздействие на организм человека оказывает и электрическое поле повышенной напряженности.
Оно вызывает функциональные изменения центральной нервной, сердечнососудистой и некоторых других систем организма.
Защиту от статического электричества
осуществляют по двум основным направлениям: уменьшение генерации электрических зарядов и устранение зарядов статического электричества. Для реализации первого направления необходимо правильно подбирать конструкционные материалы, из которых изготавливаются машины, агрегаты и прочее технологическое оборудование. Эти материалы должны быть слабо электризующимися или неэлектризующимися. Например, синтетический материал, состоящий на 40% из нейлона и 60% дакрона, не электризуется при трении о хромированную поверхность.
Для снятия зарядов статического электричества с поверхности технологического оборудования его обязательно заземляют.
Кроме перечисленных способов защиты от статического электричества большое значение имеет снижение удельного поверхностного электрического сопротивления перерабатываемых материалов. Это достигается повышением относительной влажности в помещении, где производится обработка поглощающих воду материалов (древесины, бумага, хлопчатобумажной ткани и др.), до 65–70%, нанесением на их поверхность специальных антистатических составов, введением в состав твердых диэлектриков электропроводящих материалов (графита, углеродных волокон, алюминиевой пудры и т.д.).Существуют и другие методы защиты от статического электричества.
Защита гидросферы
Характеристика гидроресурсов и сточных вод. Гидросферой называют водную оболочку Земли. Это совокупность океанов, морей, озер, прудов, болот и подземных вод. Гидросфера – самая тонкая оболочка нашей планеты, она составляет лишь 10-3% общей массы планеты.
Роль воды во всех жизненных процессах общепризнана. Без воды человек может жить не более 8 суток, за год он потребляет около 1 т воды. Растения содержат 90% воды. Сельское хозяйство является основным потребителем пресной воды. Вода идет на мелиорацию, обслуживание животноводческих комплексов. Так, необходимо воды для выращивания
1 т пшеницы – 1500 т
1 т риса – 7000 т
1 т хлопка – 10 000 т
Вода необходима практически всем отраслям промышленности. Так, требуется воды на производство
1 т чугуна –50–150т
1 т пластмасс – 500–1000 т
1 т цемента – 4500 т
1 т бумаги – 100 000 т
На электростанциях мощностью 300 тыс. кВт расход воды составляет 300 млн т/год.
Указанные производства требуют только пресную воду. Расчеты показывают, что количество пресной воды составляет всего 2,5% всей воды на планете; 85% – морская вода, содержащая до 35 г/л солей. Запасы пресной воды распределены крайне неравномерно: 72,2% – льды; 22,4% – грунтовые воды; 0,35% – атмосфера; 5,05% – устойчивый сток рек и вода озер. На долю воды, которую мы можем использовать, приходится всего 10-2% всей пресной воды на Земле.
Хозяйственная деятельность человека привела к заметному сокращению количества воды в водоемах суши: мелеют водоемы, исчезают малые реки, высыхают колодцы, снижается уровень грунтовых вод. Сокращение уровня грунтовых вод уменьшает урожайность окрестных хозяйств.
Проблема Каспия –
хищническое истребление ценнейших пород осетровых рыб при том, что разведение молоди осетровых, т. е. восстановление их популяции, ведется только рыбохозяйствами России и в небольшом объеме – Азербайджаном, а остальные страны только потребляют.
Проблема Азовского моря –
увеличение концентрации солей. За послевоенные годы его засоленность увеличилась с 9 до 15,6 ррт. Организмы, питающие рыбу, погибают. Результат – снижение возможности рыболовства на Азовском море.
Проблема Байкала –
воду этого ценнейшего озера используют для получения целлюлозы по финской технологии, т. е. используют воду минимальной минерализации, содержащую меньше 100 мг/л солей. Обычно в пресной воде содержание солей составляет 300–450 мг/л, в питьевой – 380 мг/л. Байкал после строительства целлюлозно-бумажного комбината в городе Байкальске стал загрязняться (60-е годы). В озере Байкал находится несколько сот эндаминореликтов – редких видов биоты, которых нет в других водоемах. С запозданием разработаны уникальные очистные сооружения, стоимость которых составила 30% стоимости основных фондов производства. Однако принимаемые меры недостаточны для защиты Байкала.
По количеству солей вода делится на: пресную (< 1 г/л солей), засоленную (до 25 г/л солей) и соленую (> 25). В океане, например, – 35 г/л; Балтийском море – 8–16 г/л; Каспийском – 11–13 г/л; Черном – 17–22 г/л.
Деградация природных вод связана в первую очередь с увеличением солесодержания. Количество минеральных солей в водах постоянно растет, даже в такой большой водной системе, как бассейн реки Волги с ее притоками Камой и Окой. В ряде небольших рек, например, в Северном Донце, вода уже не пресная, а соленая. Средняя минерализация рек Украины составляет 2–3 г/л. В настоящее время многие реки Урала не могут быть использованы как источники водоснабжения. Так, в Каму поступают промышленные стоки с минерализацией 1,5–5,0 г/л.
Основная причина засоленности вод – истребление лесов, распашка степей, выпас скота. Вода при этом не задерживается в почве, не увлажняет ее, не пополняет почвенные источники, а скатывается через реки в море. В качестве мер, принятых в последнее время для снижения засоленности рек, используется посадка лесов, предпринимаемая, например, в Саратовской области.
Громаден объем сброса дренажных вод.
К 2000 г. он составит 25–35 км3. Системы орошения потребляют обычно 1–2 тыс. м3/га, их минерализация составляет до 20 г/л. Огромен вклад в минерализацию воды сброса промышленных стоков. По данным за 1996 г. в России объем промстоков был равен стоку такой большой реки, как Кубань.
Наблюдается постоянный рост водопотребления как на производственные, так и на бытовые нужды. В среднем в городах с населением 1 млн человек, по данным США, потребляется 200 л/сутки воды на человека, по другим городам, л/с. (литр/сутки):
Москва – 400 Лондон – 170
С.-Петербург – 500 Париж – 130
Берлин – 250 Брюссель – 85
Водоемы (в частности, пруды) представляют собой сложную экологическую систему, которая создавалась в течение длительного времени. В них непрерывно протекает процесс изменения состава примесей, приближающийся к состоянию равновесия. Значительные отклонения от состояния равновесия могут привести к гибели популяций водных организмов, т. е. к невозможности возврата к состоянию равновесия, а это приводит к гибели экосистемы. Процессы, связанные с возвращением экосистемы к первоначальному состоянию, называются процессами самоочищения. К важнейшим из них относятся:
· осаждение грубодисперсных и коагуляция коллоидных примесей;
· окисление (минерализация) органических примесей;
· окисление минеральных примесей кислородом;
· нейтрализация кислот и оснований за счет буферной емкости воды водоема;
· гидролиз солей тяжелых металлов, приводящий к образованию малорастворимых гидроксидов и выделению их из раствора и др.
Основные характеристики сточных вод,
влияющие на состояние водоемов: температура, минералогический состав примесей, содержание кислорода, мл, рН (водородный показатель), концентрация вредных примесей.
Особенно большое значение для самоочищения водоемов имеет кислородный режим. Условия спуска сточных вод в водоемы регламентируются «Правилами охраны поверхностных вод от загрязнения сточными водами». Сточные воды характеризуются следующими признаками:
· мутность воды – определяется с помощью мутномера: исследуемую воду сравнивают с эталонным раствором, который приготовлен из каолина (или из инфузорной земли) на дистиллированной воде, выражается в мг/л;
· цветность воды – определяется сравнением интенсивности окраски испытуемой воды со стандартной шкалой. Выражается в градусах цветности. В качестве стандартного раствора применяют раствор солей кобальта;
· сухой остаток – масса солей и веществ, которые остаются после выпаривания воды (мг/л);
· кислотность – измеряется в единицах рН. Природная вода обычно имеет щелочную реакцию (рН > 7);
· жесткость – зависит от содержания солей Са2+
и Mg2+. Различают три вида жесткости воды: общая, обусловленная содержанием солей кальция и магния независимо от содержания анионов; постоянная, обусловленная содержанием ионов С1-
и SOпосле кипячения в течение 1 ч (она не удаляется); устранимая (временная) – устраняется кипячением: Са (НСО3)
2 > СаСО3
+ СО2 + Н2О. Жесткость измеряется в мг-экв/л солей магния и кальция (1 мг-экв соответствует 28 мг СаО) и в градусах (1° – количество солей кальция и магния, соответствующее 10 мг СаО в 1 л воды). 1° жесткости = 10 мг-экв = 2,8° жесткости;
· растворимый кислород – зависит от температуры воды и барометрического давления, измеряется в мг/л;
· биологическая потребность в кислороде (БПК) – количество кислорода, поглощаемое микроорганизмами в сточных водах. За критерий оценки БПК принята величина уменьшения количества растворенного кислорода в воде в течение 5 или 20 суток при температуре 20°С.
В зависимости от условий образования сточные воды делятся на три группы:
· бытовые сточные воды – стоки душевых, прачечных, бань, столовых, туалетов, от мытья полов и т.д. Их количество в среднем составляет 0,5–2 л/с. с 1 га жилой застройки города, они содержат примерно 58% органических и 42% минеральных веществ;
· атмосферные сточные воды, или ливневые, их сток неравномерен: 1 раз в год – 100–150 л/с. с 1 га; 1 раз в 10 лет – 200–300 л/с. с 1 га. Особенно опасны ливневые стоки на промышленных предприятиях. Из-за их неравномерности затруднены сбор и очистка этих стоков;
· промышленные сточные воды – жидкие отходы, которые возникают при добыче и переработке сырья. Расход воды при этом исчисляют из удельного водопотребления на единицу продукции.
Самым важным условием, необходимым для того, чтобы биохимические процессы в водоеме протекали правильно и обеспечивали самоочищение воды, является наличие в ней растворенного кислорода. Если кислорода недостаточно, то высшие организмы погибают. Органические соединения вместо окисления подвергаются анаэробному разложению с выделением сероводорода, углекислого газа, метана и водорода, создающих вторичные загрязнения водоема.
По санитарным нормам (СНИП) значение БПК в зависимости от типа природных водоемов не должно превышать 3–6 мг О2/лН2О. В сточных водах БПК составляет от 200 до 3000 мг/л, поэтому при сбросе в водоемы промстоков необходимо их чистить или сильно разбавлять.
Главным критерием качества воды и атмосферы в нашей стране являются ПДК. Но они установлены далеко не для всех веществ. Спуск в водоемы новых веществ, ПДК которых не определены, в нашей стране запрещен. Кроме того, часто используют значения ПДК не для сточных вод, а для водоема. Таким образом, появляется возможность достичь установленного ПДК простым разбавлением сточных вод, чем часто пользуются. Около половины сточных вод на Земле не подвергается специальной очистке перед сбросом в водоемы.
Их обезвреживание заключается лишь в разбавлении чистой водой и самоочищении водоемов. Например, сточные воды заводов по производству полиэтилена и полистирола надо разбавлять в 30 раз; сточные воды от производства синтетического каучука – в 185 раз.
В России ежегодно образуется около 21 км3 сточных вод, из них 16 км3 сливаются в Волгу или ее притоки. Выбросы Си, Zn, Сг превышают ПДК. Поэтому принято специальное постановление по защите окружающей среды в бассейнах Волги и Урала.
Сбросы сточных вод регламентируются также величиной ПДС (предельно-допустимого сброса) предприятия. В 90-х годах в мире использовали 2000–3000 км3 пресных вод, т. е. примерно 30% устойчивого мирового стока рек. Чтобы не погибнуть, чистить воду придется всем странам. Кроме того, пресная вода, удобная для использования, распределена крайне неравномерно. В Европе и Азии, где проживает 70% населения Земли, мировых запасов речных вод очень мало. Гидроресурсы нашей страны велики, однако более 80% речного стока приходится на малонаселенные районы Севера и Востока. На Европейской части России проживает около 80% населения и на них приходится всего 20% гидроресурсов.
Таким образом, влияние хозяйственной деятельности человека на кругооборот воды в природе привело к:
· сокращению количества воды в водоемах суши;
· росту водопотребления;
· исчерпанию самоочищающей способности водоемов;
· деградации природных вод.
Выход из положения – создание замкнутых водооборотных систем. Помимо перечисленных выше факторов это связано с экономическими соображениями. Стоимость очистки сточных вод даже после значительного разбавления очень велика. Так, если принять стоимость 90% очистки за 1 условную единицу (у. е.), то очистка на 99% дороже в 10 раз (10 у. е.), а очистка на 99,9%, которая требуется чаще всего, будет дороже уже в 100 раз, т. е. составит 100 у. е. В результате локальная очистка сточных вод только от характерных для данного вида стоков загрязнений для их повторного использования в том же производстве оказывается существенно дешевле их полной очистки в соответствии с требованиями санитарных органов.
Для характеристики замкнутых водооборотных систем используется критерий кратности использования воды в обороте:
те – общий объем воды, потребляемый предприятием (м3/ч; м3/г сырья или продукции);
Q3 – забор потребления свежей воды.
Чем больше кратность использования, Тем совершеннее схема водоснабжения. В США в 1995 г. среднее значение кратности равнялось 7,5. В России в 1995 г. критерий кратности использования воды по отраслям составлял:
Нефтехимия – 7,00
Черная и цветная металлургия – 5,25
Пищевая промышленность – 3,00
Теплоэнергетика – 2,25
Производство стройматериалов – 1,60
Легкая промышленность – 1,30
В нашей стране планировалось довести этот показатель в ближайшие годы до 7,00 в среднем по предприятиям, а в США – до 27.
Создание экономически радикальных замкнутых систем водного хозяйства – весьма трудная задача. Сложный химический состав сточных вод, разнообразие содержащихся в них соединений делают невозможной разработку универсальной бессточной технологической схемы. Можно говорить лишь об общих принципах создания и проектирования бессточных схем.
Основные положения создания водооборотных систем:
1. Разработка научно обоснованных требований к качеству воды, используемой во всех технологических процессах и операциях. В подавляющем большинстве случаев нет необходимости в использовании воды питьевого качества.
2. Максимальное внедрение систем воздушного охлаждения вместо водного. Здесь большую роль сыграло бы внедрение агрегатов большой единичной мощности. При этом высокоэнергетическое тепло используется для технологических целей, а низкоэнергетическое – для обогрева. Так, например, в результате внедрения установок воздушного охлаждения на предприятиях нефтепереработки потребление воды в среднем сократилось на 110–160 млн м3/год (Омский нефтеперерабатывающий завод и др.).
3. Размещение на промышленных площадях комплекса производств (так называемых территориально-производственных комплексов – ТПК) должно обеспечить возможность многократного (каскадного) использования воды в технологических процессах и операциях.
4. Последовательное многократное использование воды в технологических операциях должно по возможности обеспечить получение небольшого объема максимально загрязненных сточных вод.
5. Использование воды для очистки газов от водорастворимых соединений целесообразно только тогда, когда из газов извлекают, а затем утилизируют ценные компоненты.
6. Применение воды для очистки газов от твердых частиц допустимо только в замкнутом цикле.
Методы очистки воды. Чистые сточные воды – это воды, которые в процессе участия в технологии производства практически не загрязняются и сброс которых без очистки не вызывает нарушений нормативов качества воды водного объекта. Нормативы едины и утверждены Правилами охраны вод от загрязнения сточными водами, принятыми Минводхозом, Минздравом и Минрыбхозом в 1974 г. В 1996 г. на базе Роскомвода и Роскомнедр было создано Министерство природных ресурсов РФ. Принят ряд новых законов Российской Федерации, которые значительно меняют сложившуюся нормативно-правовую базу и систему управления и контроля в области охраны окружающей среды и рационального использования природных ресурсов.
Загрязненные сточные воды –
это воды, которые в процессе использования загрязняются различными компонентами и сбрасываются без очистки, а также сточные воды, проходящие очистку, степень которой ниже норм, установленных местными органами Государственного комитета РФ по охране окружающей среды. Сброс этих вод вызывает нарушение нормативов качества воды в водном объекте.
Практически всегда очистка промышленных стоков – это комплекс методов. Наиболее широко используется комбинация механической очистки, нейтрализации промышленных стоков, или реагентной очистки, и биохимической очистки. Эти операции осуществляются практически во всех комплексах очистных сооружений, в том числе и на станциях аэрации при очистке бытовых (канализационных) стоков. Рассмотрим их подробнее.
1. Механическая очистка стоков
Сюда относятся отстой сточных вод в специальных отстойниках, в которых происходит оседание взвешенных частиц на дно отстойников; сбор нефтепродуктов и других нерастворимых в воде жидкостей с поверхности стоков устройствами типа механических рук и, наконец, фильтрация вод через слой песка примерно 1,5-метровой толщины.
2. Химическая, или реагентная, очистка
а) Один из видов обработки сточных вод – реакции нейтрализации. Нейтрализация – химическая реакция, ведущая к уничтожению кислотных свойств раствора с помощью щелочей, а щелочных свойств раствора – с помощью кислот. Поскольку химическая природа отходов может быть различной, то для нейтрализации одного вида отходов необходимо уменьшить кислотные свойства, а для другого вида отходов – щелочные свойства. О степени кислотности или щелочности раствора судят по величине водородного показателя рН. Значение величины рН растворов различных веществ колеблется от 0 до 14. Небольшие значения рН свидетельствуют о наличии кислотной среды.
Чтобы контролировать реакцию нейтрализации, надо знать, какое количество кислоты или щелочи надо добавить в раствор для получения необходимого значения рН. Для этого используют метод титрования, по объему израсходованного титранта вычисляя количество определяемого вещества.
Самую простую систему очистки на основе реакции нейтрализации можно представить в виде измельченного известняка, на который вылили раствор кислоты, а осадок собрали в отстойник.
б) Реакции окисления-восстановления. Любая реакция окисления-восстановления есть одновременное окисление одних компонентов и восстановление других. Наиболее распространенные окислители и восстановители:
Окислители Восстановители
Кислород или воздух Хлорит
Озон Сульфат Fe2+
Хлор, гипохлорит Гидросульфит
Перекись водорода Диоксид серы
Перманганат калия Сероводород
Одним из важнейших окисляющих агентов является хлор, поэтому большинство химических операций со сточными водами начинается с хлорирования, чтобы высокотоксичный хлор к концу реагентной обработки полностью удалялся из воды. Окислительно-восстановительные реакции используются для превращения токсичных веществ в безвредные.
3. Биохимическая очистка
а) Аэробная биохимическая очистка – минерализация органического вещества промышленных или бытовых стоков, происходящая в результате его окисления при содействии аэробных микроорганизмов (минерализаторов) в процессе использования ими этого вещества в качестве источника питания в условиях интенсивного потребления микроорганизмами растворенного в воде кислорода:
С6Н12О6
+ 6O2 = 6СО2 + 6H2O.
Было установлено, что органические вещества омертвевших организмов разрушаются под действием бактерий, если для последних созданы соответствующие условия, т. е. своевременно подается кислород и среда-носитель оказывается благоприятной для развития микроорганизмов. В качестве среды-носителя был выбран песчаный слой толщиной 1,5 м. Доступ кислорода обеспечивается с помощью вентиляции или путем естественной тяги. Сточные воды сливаются на грунт только в течение 6 часов, а остальные 18 часов отводятся на биохимические процессы. Культура микробов развивается в верхних слоях песка.
Этот метод очистки, названный методом капельной фильтрации, впервые использован в прошлом веке (1866 г.) в Лондоне. Метод позволяет при использовании 1 га песчаной почвы очистить 1,038·106л/с. сточных вод, следовательно, Лондону в 1866г. для очистки 1,57·109л/с. сточных вод необходимо было иметь 810 га подходящих земель. Это слишком большая площадь.
Усовершенствование метода капельного фильтра – перполяционный фильтр – разбрызгивание сточных вод на пласт щебня. Наиболее широко система с перполяционным фильтром стала применяться, когда были достигнуты успехи в области получения пластмасс с заданными свойствами. В современных системах очистки накопление бактериального материала осуществляется на пластмассовых дисках, смонтированных на вращающейся оси. Диски наполовину погружены в сточные воды, по мере их вращения бактерии периодически снабжаются питательной средой и кислородом. Сейчас метод капельного фильтра используют только при условии дешевой земли и мягкого климата.
Наиболее универсальным способом обработки сточных вод является обработка активным илом.
Сточные воды смешивают с илом, образовавшимся в результате предварительного окисления вод, поэтому способ и получил такое название.
Как известно, ил представляет собой огромную популяцию различных бактерий, грибков и другой флоры, добавление которой к сточным водам приводит к быстрому установлению равновесия, способствующего разложению органических веществ, в результате которого образуются СО2 и Н2О. По существу авторы нового способа обработки изменили естественный биологический цикл таким образом, что скорость потребления питательного вещества (т.е., скорость разложения органического вещества) увеличилась на несколько порядков. Дальнейшее усовершенствование этого способа связано с разработкой методов надлежащего ухода и питания используемой популяции микроорганизмов.
Активный ил представляет собой аморфный коллоид с поверхностью 100 м2/г сухого вещества, имеет вид буро-желтых мелких хлопьев размером 3–150 мкм, взвешенных в воде. B 1 г сухого ила содержится от 108 до 1012 штук бактерий. При этом определенный вид бактерий способен окислять определенные вещества.
Бактерии, входящие в состав активного ила, способны перерабатывать только те сточные воды, из которых сформировался этот активный ил. Поэтому, если в состав очищаемых промышленных стоков будут введены новые вещества, например при изменении технологии производства, то потребуется время, чтобы бактерии, способные окислить именно эти вещества, размножились в достаточном количестве и смогли обеспечить наилучшую очистку.
Иногда даже приходится завозить на вновь создаваемое предприятие активный ил с другого предприятия, где очищаются аналогичные по составу воды и где в активном иле распространены нужные виды бактерий.
Обычно концентрацию активного ила поддерживают равной 2–4 г/л. В ходе очистки активный ил время от времени выводят из очистных сооружений, так как его количество растет. Часть его при этом используется в качестве ценного удобрения, если нет тяжелых металлов, часть стабилизируют, т. е. обрабатывают избытком кислорода для удаления всевозможной органики, предотвращая таким образом гниение.
Часть поступает на анаэробное разложение. Аппаратура для аэробной биохимической очистки представляет собой так называемый аэротенк, или окситенк (рис. 4.5).
б) Анаэробная биохимическая очистка. В случае, если БПК намного выше нормы, а также для удаления избытка активного ила и отходов сельскохозяйственных продуктов применяют анаэробную биохимическую очистку в метантенках (реактор с мешалкой и теплообменником). При этом источником кислорода в воде служат группы кислородосодержащих анионов: NO; SО; CO.
В основе метанового брожения лежит способность сообществ определенных микроорганизмов в ходе жизнедеятельности сначала в фазе кислого водородного брожения с помощью бактерий гидролизовать сложные органические соединения до более простых, а затем с помощью метанообразующих бактерий превращать их в метан и в угольную кислоту.
Процесс окисления–восстановления – это переход электронов от субстрата-донора к конечному акцептору. Для аэробной реакции конечным акцептором является кислород, а при ферментации (анаэробной очистке) – органическое соединение, образующееся в результате «простого перемещения» водорода из одной органической молекулы в другую:
С6Н12О6
= ЗСН3СООН + 15 ккал;
2СН3СООН = 2СН4
+ 2СО2.
Образующийся газ состоит из метана (65%) и СОз (33%) и может быть использован для нагрева до 45–55°С в самом метантенке, где происходит анаэробное брожение. Сброженный осадок имеет высокую влажность (95–98%), его уплотняют, сушат, затем используют в качестве удобрения или, если есть токсичные примеси, сжигают;
Однако не всякие сточные и природные воды могут быть очищены биохимическими методами. Нормы на содержание вредных веществ в сточных и природных водах, поступающих на биологические очистные сооружения, по некоторым металлам следующие: А13+ – 5 мг/л; Fе3+
– 5 мг/л; Сr6+ – 0,1 мг/л; Mg2+
– 1000 мг/л.
Не все органические вещества разлагаются на станциях биохимической очистки. Так, практически не разрушается бензин, красители, мазут и др. Эффективность биохимической очистки на самых современных установках составляет 90% по органическим веществам и лишь 20–40% – по неорганическим, т.
е. практически не снижается солесодержание. Не могут быть очищены воды, содержащие более 1000 мг/л фенолов, 300–500 мг/л спиртов, 25 мг/л нефтепродуктов, т. е. для многих случаев эти методы не эффективны. В среднем эффективность анаэробного метода составляет около 40%. Сравнительная оценка очистки сточных вод различными методами представлена в табл. 4.2.
Процессы анаэробной очистки проводят в специальных метантенках при температуре 30–55°С, выделяющийся метан СН4 может быть использован для нагрева метантенка.
Например, в США при анаэробной очистке сточных вод животноводческого комплекса (500 голов свиней) за счет сжигания метана после анаэробной очистки комплекс не только обеспечивает себя электроэнергией, но иногда в летнее время может даже продавать ее. Образующиеся после анаэробной очистки сточные воды могут быть использованы для выращивания специальных одноклеточных водорослей типа хлореллы, которые в дальнейшем могут быть использованы на корм скоту. Цикл оказывается замкнутым.
Необходимо искать такие способы ликвидации отходов, которые дают возможность получать полезные продукты, например, дрожжи для выпечки хлебо-булочных изделий и для производства этилового спирта или для превращения отходов, образующихся при переработке древесной пульпы, в полезный продукт.
4. Обеззараживание воды
Последней стадией подготовки воды для питьевых и других нужд является ее обеззараживание, т. е. избавление от болезнетворных микроорганизмов, так как хорошо известно, что через воду могут распространяться такие страшные заболевания, как холера, брюшной тиф, инфекционный гепатит и др. Многие годы обеззараживание воды осуществляли с помощью обработки ее хлором. Однако стало известно, что полихлорированные бифенилы являются ядами, их находят в основном в жирах. Окисляясь, они образуют абсолютные яды – диоксины. Летальная доза диоксинов в организме для свиней, которые являются тест-объектами, – 10 мкг/кг их веса. Но эту дозу можно набрать и постепенно. Это привело ученых к выводу, что хлорирование может быть вредным.
Во многих странах в 80-е годы перешли к обработке воды фторированием, но оказалось, что оно тоже вредно. Поэтому во всем мире и в России тоже отдают предпочтение обработке воды озонированием.
Биологическая очистка не может обеспечить обессоливания сточных вод. Как известно, вода питьевого качества должна содержать не более 1000 мг/л солей, из них: хлоридов – 350 мг/л, сульфатов – 500 мг/л. Необходимую в технических целях пресную воду получают методами выделения солей из сточных и природных вод.
5. Специальные методы очистки воды
Существует много специальных методов выделения солей из природных и сточных вод.
а) Дистилляция (выпаривание) – хорошо освоенный и широко применяемый метод. Мощность выпарных установок составляет 15–30 тыс. м3 в сутки. Одни из самых мощных выпарных установок располагаются на предприятиях атомной энергетики, где необходимо опреснение морской воды, например, в г. Шевченко (реактор на быстрых нейтронах). Основным недостатком этого способа является большой расход энергии – 0,020 Гкал/т. Геоопреснительные установки невелики по мощности (< 20 м3/с.), а стоимость опреснения велика.
б) Вымораживание. При медленном охлаждении соленой воды из нее в первую очередь выделяются кристаллики льда, практически не содержащие солей. По сравнению с дистилляцией вымораживание имеет энергетические, технологические, конструкционные преимущества.
в) Мембранный метод. Это электродиализ и гиперфильтрация, или обратный осмос. Электродиализ – современный метод деминерализации и концентрирования растворов. Основан на направленном переносе ионов диссоциированных солей в поле постоянного тока через ионселективную мембрану из естественного или синтетического материала. Схема электродиализа представлена на рис. 4.6. За рубежом этот метод получил широкое распространение для обессоливания морской воды. Например, установка в Ливии на 20 тыс. м3/с., в США – на 400 тыс. м3.
Метод обратного осмоса – это процесс разделения водных растворов путем их фильтрования через полупроницаемую мембрану под действием давления выше осмотического (до 6–8 МПа).
Процесс характеризуется небольшими энергозатратами. За рубежом освоено производство установок производительностью до 1 тыс. м3/с. У нас работают установки меньшей мощности, но есть разработки и проекты на большие мощности. Основные трудности этих методов – в создании полупроницаемых мембран и давления.
г) Ионный обмен. Метод широко применяется во всех странах мира. До настоящего времени этот метод является основным для приготовления глубоко обессоленной воды для АЭС и ТЭС с котлами сверхвысокого и критического давления. Кроме того, метод ионного обмена широко используется в водооборотных циклах на предприятиях для концентрирования и извлечения из сточных вод ценных компонентов (например, тяжелых металлов).
Основной недостаток общепринятых технологических схем ионного обмена – избыток растворов солей после регенерации ионообменных фильтров. Велик расход воды на собственные нужды (20–60% от производительности). Существует необходимость удаления органических веществ, чтобы избежать отравления ионитами. Поэтому ионный обмен с большим допущением можно назвать методом обессоливания сточных вод, скорее это технологический прием получения воды высокой степени очистки.
Очень широкое применение этот метод нашел в практике умягчения воды, т. е. избавления ее от солей постоянной жесткости.
6. Удаление остаточных органических веществ
После биохимической очистки могут остаться органические вещества, плохо усваиваемые микроорганизмами. Лучший способ их удаления – адсорбция активированным углем, который затем регенерируется при нагревании.
Обычно сточные воды пропускают через колонки с активированным углем, где обеспечен контакт с ним в течение 20– 40 мин. Это весьма эффективный метод, позволяющий очистить сточные воды до БПК < 1 мгО2/л (меньше нормы по ГОСТ). Аппаратура для применения этого метода довольно простая.
Адсорбция активированным углем эффективна для большинства органических соединений и используется для очистки бытовых стоков, жидких отходов перегонки нефти, фенолов и других ароматических соединений.
С целью перехода на более рациональное потребление воды и сокращения сброса загрязнений в водные объекты разработаны оптимальные нормы и укрупнены удельные показатели водопотребления и водоотвода для различных отраслей народного хозяйства с учетом совершенствования технологических процессов.
Введены в эксплуатацию замкнутые системы водного хозяйства на Краснодарском витаминном заводе, Липецком металлургическом комбинате.
В 1996 г. в г. Москве была проверена водоохранная деятельность на территории города. Установлено, что к основным нарушениям относятся неудовлетворительная эксплуатация и состояние водоочистного оборудования, отсутствие разрешений на спецводопользование, сброс сточных вод с превышением нормативных показателей. Участились случаи аварийных и залповых выбросов загрязняющих сточных вод на рельеф местности и в водоемы. В 1996 г. в водоемы города было сброшено 1305 тыс. т загрязняющих веществ (нефтепродуктов, тяжелых металлов, нитратов, хлоридов, взвешенных веществ и др.), но это почти в 2 раза меньше, чем в 1995 г. Количество загрязняющих веществ, сброшенных в 1996 г., составляет 22 наименования (табл. 4.3). Количество воды, используемой в оборотно-повторном водоснабжении, растет недостаточно: лишь на 16 предприятиях строятся очистные сооружения, а также системы оборотного водоснабжения.
Защита от действия ионизирующих излучений
Основные принципы радиационной безопасности заключаются в непревышении установленного основного дозового предела, исключении всякого необоснованного облучения и снижении дозы излучения до возможно низкого уровня. С целью реализации этих принципов на практике обязательно контролируются дозы облучения, полученные персоналом при работе с источниками ионизирующих излучений, работа проводится в специально оборудованных помещениях, используется защита расстоянием и временем, применяются различные средства коллективной и индивидуальной защиты.
Для определения индивидуальных доз облучения персонала необходимо систематически проводить радиационный (дозиметрический) контроль, объем которого зависит от характера работы с радиоактивными веществами. Каждому оператору, имеющему контакт с источниками ионизирующих излучений, выдается индивидуальный дозиметр1
для контроля полученной дозы гамма-излучений. В помещениях, где проводится работа с радиоактивными веществами, необходимо обеспечить и общий контроль за интенсивностью различных видов излучений. Эти помещения должны быть изолированы от прочих помещений, оснащены системой приточно-вытяжной вентиляции с кратностью воздухообмена не менее пяти. Окраска стен, потолка и дверей в этих помещениях, а также устройство пола выполняются таким образом, чтобы исключить накопление радиоактивной пыли и избежать поглощения радиоактивных аэрозолей, паров и жидкостей отделочными материалами (окраска стен, дверей и в некоторых случаях потолков должна производиться масляными красками, полы покрываются материалами, не впитывающими жидкости, – линолеумом, полихлорвиниловым пластикатом и др.). Все строительные конструкции в помещениях, где проводится работа с радиоактивными веществами, не должны иметь трещин и несплошностей; углы закругляют для того, чтобы не допустить скопления в них радиоактивной пыли и облегчить уборку. Не менее одного раза в месяц проводят генеральную уборку помещений с обязательным мытьем горячей мыльной водой стен, окон, дверей, мебели и оборудования.
Текущая влажная уборка помещений проводится ежедневно.
1 Устройство дозиметров описано ниже.
Для уменьшения облучения персонала все работы с этими источниками проводят с использованием длинных захватов или держателей. Защита временем заключается в том, что работу с радиоактивными источниками проводят за такой период времени, чтобы доза облучения, полученная персоналом, не превышала предельно допустимого уровня.
Коллективные средства защиты
от ионизирующих излучений регламентируются ГОСТом 12.4.120-83 «Средства коллективной защиты от ионизирующих излучений. Общие требования». В соответствии с этим нормативным документом основными средствами защиты являются стационарные и передвижные защитные экраны, контейнеры для транспортирования и хранения источников ионизирующих излучений, а также для сбора и транспортировки радиоактивных отходов, защитные сейфы и боксы и др.
Стационарные и передвижные защитные экраны предназначены для снижения уровня излучения на рабочем месте до допустимой величины. Если работу с источниками ионизирующих излучений проводят в специальном помещении – рабочей камере, то экранами служат ее стены, пол и потолок, изготовленные из защитных материалов. Такие экраны носят название стационарных. Для устройства передвижных экранов используют различные щиты, поглощающие или ослабляющие излучение.
Экраны изготавливают из различных материалов. Их толщина зависит от вида ионизирующего излучения, свойств защитного материала и необходимой кратности ослабления излучения k. Величина k показывает, во сколько раз необходимо понизить энергетические показатели излучения (мощность экспозиционной дозы, поглощенную дозу, плотность потока частиц и др.), чтобы получить допустимые значения перечисленных характеристик. Например, для случая поглощенной дозы k выражается следующим образом:
где D – мощность поглощенной дозы;
D0 – допустимый уровень поглощенной дозы.
Для сооружения стационарных средств защиты стен, перекрытий, потолков и т.
д. используют кирпич, бетон, баритобетон и баритовую штукатурку ( в их состав входит сульфат бария – BaSO4). Эти материалы надежно защищают персонал от воздействия гамма- и рентгеновского излучения.
Для создания передвижных экранов используют различные материалы. Защита от альфа-излучения достигается применением экранов из обычного или органического стекла толщиной несколько миллиметров. Достаточной защитой от этого вида излучения является слой воздуха в несколько сантиметров. Для защиты от бета-излучения экраны изготавливают из алюминия или пластмассы (органическое стекло). От гамма- и рентгеновского излучения эффективно защищают свинец, сталь, вольфрамовые сплавы. Смотровые системы изготавливают из специальных прозрачных материалов, например, свинцового стекла. От нейтронного излучения защищают материалы, содержащие в составе водород (вода, парафин), а также бериллий, графит, соединения бора и т.д. Бетон также можно использовать для защиты от нейтронов.
Защитные сейфы применяются для хранения источников гамма-излучения. Они изготавливаются из свинца и стали.
Для работы с радиоактивными веществами, обладающими, альфа- и бета-активностью, используют защитные перчаточные боксы.
Защитные контейнеры и сборники для радиоактивных отходов изготавливаются из тех же материалов, что и экраны – органического стекла, стали, свинца и др.
При проведении работ с источниками ионизирующих излучений опасная зона1 должна быть ограничена предупреждающими надписями.
1 Опасная зона – это пространство, в котором возможно воздействие на работающего опасного и (или) вредного производственных факторов (в данном случае – ионизирующих излучений).
Принцип действия приборов, предназначенных для контроля за персоналом, который подвергается воздействию ионизирующих излучений, основан на различных эффектах, возникающих при взаимодействии этих излучений с веществом. Основные методы обнаружения и измерения радиоактивности – ионизация газа, сцинтилляционные и фотохимические методы. Наиболее часто используется ионизационный метод, основанный на измерении степени ионизации среды, через которую прошло излучение.
Сцинтилляционные методы
регистрации излучений основаны на способности некоторых материалов, поглощая энергию ионизирующего излучения, превращать ее в световое излучение. Примером такого материала может служить сульфид цинка (ZnS). Сцинтилляционный счетчик представляет собой фотоэлектронную трубку с окошком, покрытым сульфидом цинка. При попадании внутрь этой трубки излучения возникает слабая вспышка света, которая приводит к возникновению в фотоэлектронной трубке импульсов электрического тока. Эти импульсы усиливаются и подсчитываются.
Фотохимические методы,
или методы авторадиографии, основаны на воздействии радиоактивного образца на слой фотоэмульсии, содержащий галогениды серебра. Уровень радиоактивности образца оценивают после проявления пленки.
Существуют и другие методы определения ионизирующих излучений, например калориметрические, которые основаны на измерении количества тепла, выделяющегося при взаимодействии излучения с поглощающим веществом.
Приборы дозиметрического контроля делятся на две группы: дозиметры, используемые для количественного измерения мощности дозы, и радиометры или индикаторы излучения, применяемые для быстрого обнаружения радиоактивных загрязнений.
Из отечественных приборов применяются, например, дозиметры марок ДРГЗ-04 и ДКС-04. Первый используется для измерения гамма- и рентгеновского излучения в диапазоне энергий 0,03–3,0 МэВ. Шкала прибора проградуирована в микрорентген/секунду (мкР/с). Второй прибор используется для измерения гамма- и бета-излучения в энергетическом диапазоне 0,5– 3,0 МэВ, а также нейтронного излучения (жесткие и тепловые нейтроны). Шкала прибора проградуирована в миллирентгенах в час (мР/ч). Промышленость выпускает также бытовые дозиметры, предназначенные для населения, например, бытовой дозиметр «Мастер-1» (предназначен для измерения дозы гамма-излучения), дозиметр-радиометр бытовой АНРИ-01 («Сосна»).
К средствам индивидуальной защиты от ионизирующих излучений относится спецодежда – халаты, комбинезоны, полукомбинезоны и шапочки, изготовленные из хлопчатобумажной ткани.
При значительном загрязнении производственного помещения радиоактивными веществами на спецодежду из ткани дополнительно надевают пленочную одежду (нарукавники, брюки, фартук, халат и т.д.), изготовленную из пластика. Как уже сказано выше, для защиты рук следует использовать просвинцованные резиновые перчатки.
В тех случаях, когда приходится работать в условиях значительного радиационного загрязнения, для защиты персонала используют пневмокостюмы (скафандры) из пластмассовых материалов с поддувом по гибким шлангам воздуха или снабженные кислородным аппаратом. Для поддержания нормальных температурных условий в скафандре расход воздуха должен составлять 150–200 л/мин.
Для защиты органов зрения от излучения применяют очки со стеклами, содержащими специальные добавки (фосфат вольфрама или свинец), а при работе с источниками альфа- и бета-излучений глаза защищают щитками из органического стекла.
Если в воздухе находятся радиоактивные аэрозоли, то надежным средством защиты органов дыхания являются респираторы и противогазы.
Контрольные вопросы
1. Назовите виды ионизирующих излучений и их основные физические характеристики.
2. Назовите основные единицы измерения ионизирующих излучений.
3. Что такое поглощенная, экспозиционная и эквивалентная дозы излучения?
4. Охарактеризуйте биологическое действие ионизирующих излучений на организм человека.
5. Какими документами регламентируются уровни облучений?
6. Каковы способы защиты от ионизирующих излучений?
7. Каковы индивидуальные средства защиты от ионизирующих излучений?
8. Какими приборами измеряют ионизирующие излучения?
9. Что такое индивидуальные дозиметры?
10. Из каких материалов изготавливают экраны для защиты от ионизирующих излучений?